1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
|
// MFEM Example 12 - Parallel Version
//
// Compile with: make ex12p
//
// Sample runs:
// mpirun -np 4 ex12p -m ../data/beam-tri.mesh
// mpirun -np 4 ex12p -m ../data/beam-quad.mesh
// mpirun -np 4 ex12p -m ../data/beam-tet.mesh -s 462 -n 10 -o 2 -elast
// mpirun -np 4 ex12p -m ../data/beam-hex.mesh -s 3878
// mpirun -np 4 ex12p -m ../data/beam-wedge.mesh -s 81
// mpirun -np 4 ex12p -m ../data/beam-tri.mesh -s 3877 -o 2 -sys
// mpirun -np 4 ex12p -m ../data/beam-quad.mesh -s 4544 -n 6 -o 3 -elast
// mpirun -np 4 ex12p -m ../data/beam-quad-nurbs.mesh
// mpirun -np 4 ex12p -m ../data/beam-hex-nurbs.mesh
//
// Description: This example code solves the linear elasticity eigenvalue
// problem for a multi-material cantilever beam.
//
// Specifically, we compute a number of the lowest eigenmodes by
// approximating the weak form of -div(sigma(u)) = lambda u where
// sigma(u)=lambda*div(u)*I+mu*(grad*u+u*grad) is the stress
// tensor corresponding to displacement field u, and lambda and mu
// are the material Lame constants. The boundary conditions are
// u=0 on the fixed part of the boundary with attribute 1, and
// sigma(u).n=f on the remainder. The geometry of the domain is
// assumed to be as follows:
//
// +----------+----------+
// boundary --->| material | material |
// attribute 1 | 1 | 2 |
// (fixed) +----------+----------+
//
// The example highlights the use of the LOBPCG eigenvalue solver
// together with the BoomerAMG preconditioner in HYPRE. Reusing a
// single GLVis visualization window for multiple eigenfunctions
// and optional saving with ADIOS2 (adios2.readthedocs.io) streams
// are also illustrated.
//
// We recommend viewing examples 2 and 11 before viewing this
// example.
#include "mfem.hpp"
#include <fstream>
#include <iostream>
using namespace std;
using namespace mfem;
int main(int argc, char *argv[])
{
// 1. Initialize MPI and HYPRE.
Mpi::Init(argc, argv);
int num_procs = Mpi::WorldSize();
int myid = Mpi::WorldRank();
Hypre::Init();
// 2. Parse command-line options.
const char *mesh_file = "../data/beam-tri.mesh";
int order = 1;
int nev = 5;
int seed = 66;
bool visualization = 1;
bool amg_elast = 0;
bool adios2 = false;
OptionsParser args(argc, argv);
args.AddOption(&mesh_file, "-m", "--mesh",
"Mesh file to use.");
args.AddOption(&order, "-o", "--order",
"Finite element order (polynomial degree).");
args.AddOption(&nev, "-n", "--num-eigs",
"Number of desired eigenmodes.");
args.AddOption(&seed, "-s", "--seed",
"Random seed used to initialize LOBPCG.");
args.AddOption(&amg_elast, "-elast", "--amg-for-elasticity", "-sys",
"--amg-for-systems",
"Use the special AMG elasticity solver (GM/LN approaches), "
"or standard AMG for systems (unknown approach).");
args.AddOption(&visualization, "-vis", "--visualization", "-no-vis",
"--no-visualization",
"Enable or disable GLVis visualization.");
args.AddOption(&adios2, "-adios2", "--adios2-streams", "-no-adios2",
"--no-adios2-streams",
"Save data using adios2 streams.");
args.Parse();
if (!args.Good())
{
if (myid == 0)
{
args.PrintUsage(cout);
}
return 1;
}
if (myid == 0)
{
args.PrintOptions(cout);
}
// 3. Read the (serial) mesh from the given mesh file on all processors. We
// can handle triangular, quadrilateral, tetrahedral, hexahedral, surface
// and volume meshes with the same code.
Mesh *mesh = new Mesh(mesh_file, 1, 1);
int dim = mesh->Dimension();
if (mesh->attributes.Max() < 2)
{
if (myid == 0)
cerr << "\nInput mesh should have at least two materials!"
<< " (See schematic in ex12p.cpp)\n"
<< endl;
return 3;
}
// 4. Select the order of the finite element discretization space. For NURBS
// meshes, we increase the order by degree elevation.
if (mesh->NURBSext)
{
mesh->DegreeElevate(order, order);
}
// 5. Refine the serial mesh on all processors to increase the resolution. In
// this example we do 'ref_levels' of uniform refinement. We choose
// 'ref_levels' to be the largest number that gives a final mesh with no
// more than 1,000 elements.
{
int ref_levels =
(int)floor(log(1000./mesh->GetNE())/log(2.)/dim);
for (int l = 0; l < ref_levels; l++)
{
mesh->UniformRefinement();
}
}
// 6. Define a parallel mesh by a partitioning of the serial mesh. Refine
// this mesh further in parallel to increase the resolution. Once the
// parallel mesh is defined, the serial mesh can be deleted.
ParMesh *pmesh = new ParMesh(MPI_COMM_WORLD, *mesh);
delete mesh;
{
int par_ref_levels = 1;
for (int l = 0; l < par_ref_levels; l++)
{
pmesh->UniformRefinement();
}
}
// 7. Define a parallel finite element space on the parallel mesh. Here we
// use vector finite elements, i.e. dim copies of a scalar finite element
// space. We use the ordering by vector dimension (the last argument of
// the FiniteElementSpace constructor) which is expected in the systems
// version of BoomerAMG preconditioner. For NURBS meshes, we use the
// (degree elevated) NURBS space associated with the mesh nodes.
FiniteElementCollection *fec;
ParFiniteElementSpace *fespace;
const bool use_nodal_fespace = pmesh->NURBSext && !amg_elast;
if (use_nodal_fespace)
{
fec = NULL;
fespace = (ParFiniteElementSpace *)pmesh->GetNodes()->FESpace();
}
else
{
fec = new H1_FECollection(order, dim);
fespace = new ParFiniteElementSpace(pmesh, fec, dim, Ordering::byVDIM);
}
HYPRE_BigInt size = fespace->GlobalTrueVSize();
if (myid == 0)
{
cout << "Number of unknowns: " << size << endl
<< "Assembling: " << flush;
}
// 8. Set up the parallel bilinear forms a(.,.) and m(.,.) on the finite
// element space corresponding to the linear elasticity integrator with
// piece-wise constants coefficient lambda and mu, a simple mass matrix
// needed on the right hand side of the generalized eigenvalue problem
// below. The boundary conditions are implemented by marking only boundary
// attribute 1 as essential. We use special values on the diagonal to
// shift the Dirichlet eigenvalues out of the computational range. After
// serial/parallel assembly we extract the corresponding parallel matrices
// A and M.
Vector lambda(pmesh->attributes.Max());
lambda = 1.0;
lambda(0) = lambda(1)*50;
PWConstCoefficient lambda_func(lambda);
Vector mu(pmesh->attributes.Max());
mu = 1.0;
mu(0) = mu(1)*50;
PWConstCoefficient mu_func(mu);
Array<int> ess_bdr(pmesh->bdr_attributes.Max());
ess_bdr = 0;
ess_bdr[0] = 1;
ParBilinearForm *a = new ParBilinearForm(fespace);
a->AddDomainIntegrator(new ElasticityIntegrator(lambda_func, mu_func));
if (myid == 0)
{
cout << "matrix ... " << flush;
}
a->Assemble();
a->EliminateEssentialBCDiag(ess_bdr, 1.0);
a->Finalize();
ParBilinearForm *m = new ParBilinearForm(fespace);
m->AddDomainIntegrator(new VectorMassIntegrator());
m->Assemble();
// shift the eigenvalue corresponding to eliminated dofs to a large value
m->EliminateEssentialBCDiag(ess_bdr, numeric_limits<real_t>::min());
m->Finalize();
if (myid == 0)
{
cout << "done." << endl;
}
HypreParMatrix *A = a->ParallelAssemble();
HypreParMatrix *M = m->ParallelAssemble();
delete a;
delete m;
// 9. Define and configure the LOBPCG eigensolver and the BoomerAMG
// preconditioner for A to be used within the solver. Set the matrices
// which define the generalized eigenproblem A x = lambda M x.
HypreBoomerAMG * amg = new HypreBoomerAMG(*A);
amg->SetPrintLevel(0);
if (amg_elast)
{
amg->SetElasticityOptions(fespace);
}
else
{
amg->SetSystemsOptions(dim);
}
HypreLOBPCG * lobpcg = new HypreLOBPCG(MPI_COMM_WORLD);
lobpcg->SetNumModes(nev);
lobpcg->SetRandomSeed(seed);
lobpcg->SetPreconditioner(*amg);
lobpcg->SetMaxIter(100);
lobpcg->SetTol(1e-8);
lobpcg->SetPrecondUsageMode(1);
lobpcg->SetPrintLevel(1);
lobpcg->SetMassMatrix(*M);
lobpcg->SetOperator(*A);
// 10. Compute the eigenmodes and extract the array of eigenvalues. Define a
// parallel grid function to represent each of the eigenmodes returned by
// the solver.
Array<real_t> eigenvalues;
lobpcg->Solve();
lobpcg->GetEigenvalues(eigenvalues);
ParGridFunction x(fespace);
// 11. For non-NURBS meshes, make the mesh curved based on the finite element
// space. This means that we define the mesh elements through a fespace
// based transformation of the reference element. This allows us to save
// the displaced mesh as a curved mesh when using high-order finite
// element displacement field. We assume that the initial mesh (read from
// the file) is not higher order curved mesh compared to the chosen FE
// space.
if (!use_nodal_fespace)
{
pmesh->SetNodalFESpace(fespace);
}
// 12. Save the refined mesh and the modes in parallel. This output can be
// viewed later using GLVis: "glvis -np <np> -m mesh -g mode".
{
ostringstream mesh_name, mode_name;
mesh_name << "mesh." << setfill('0') << setw(6) << myid;
ofstream mesh_ofs(mesh_name.str().c_str());
mesh_ofs.precision(8);
pmesh->Print(mesh_ofs);
for (int i=0; i<nev; i++)
{
// convert eigenvector from HypreParVector to ParGridFunction
x = lobpcg->GetEigenvector(i);
mode_name << "mode_" << setfill('0') << setw(2) << i << "."
<< setfill('0') << setw(6) << myid;
ofstream mode_ofs(mode_name.str().c_str());
mode_ofs.precision(8);
x.Save(mode_ofs);
mode_name.str("");
}
}
// 13. Optionally output a BP (binary pack) file using ADIOS2. This can be
// visualized with the ParaView VTX reader.
#ifdef MFEM_USE_ADIOS2
if (adios2)
{
std::string postfix(mesh_file);
postfix.erase(0, std::string("../data/").size() );
postfix += "_o" + std::to_string(order);
adios2stream adios2output("ex12-p-" + postfix + ".bp",
adios2stream::openmode::out, MPI_COMM_WORLD);
pmesh->Print(adios2output);
for (int i=0; i<nev; i++)
{
x = lobpcg->GetEigenvector(i);
// x is a temporary that must be saved immediately
x.Save(adios2output, "mode_" + std::to_string(i));
}
}
#endif
// 14. Send the above data by socket to a GLVis server. Use the "n" and "b"
// keys in GLVis to visualize the displacements.
if (visualization)
{
char vishost[] = "localhost";
int visport = 19916;
socketstream mode_sock(vishost, visport);
for (int i=0; i<nev; i++)
{
if ( myid == 0 )
{
cout << "Eigenmode " << i+1 << '/' << nev
<< ", Lambda = " << eigenvalues[i] << endl;
}
// convert eigenvector from HypreParVector to ParGridFunction
x = lobpcg->GetEigenvector(i);
mode_sock << "parallel " << num_procs << " " << myid << "\n"
<< "solution\n" << *pmesh << x << flush
<< "window_title 'Eigenmode " << i+1 << '/' << nev
<< ", Lambda = " << eigenvalues[i] << "'" << endl;
char c;
if (myid == 0)
{
cout << "press (q)uit or (c)ontinue --> " << flush;
cin >> c;
}
MPI_Bcast(&c, 1, MPI_CHAR, 0, MPI_COMM_WORLD);
if (c != 'c')
{
break;
}
}
mode_sock.close();
}
// 15. Free the used memory.
delete lobpcg;
delete amg;
delete M;
delete A;
if (fec)
{
delete fespace;
delete fec;
}
delete pmesh;
return 0;
}
|