1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
|
// MFEM Example 16
//
// Compile with: make ex16
//
// Sample runs: ex16
// ex16 -m ../data/inline-tri.mesh
// ex16 -m ../data/disc-nurbs.mesh -tf 2
// ex16 -s 1 -a 0.0 -k 1.0
// ex16 -s 2 -a 1.0 -k 0.0
// ex16 -s 3 -a 0.5 -k 0.5 -o 4
// ex16 -s 14 -dt 1.0e-4 -tf 4.0e-2 -vs 40
// ex16 -m ../data/fichera-q2.mesh
// ex16 -m ../data/fichera-mixed.mesh
// ex16 -m ../data/escher.mesh
// ex16 -m ../data/beam-tet.mesh -tf 10 -dt 0.1
// ex16 -m ../data/amr-quad.mesh -o 4 -r 0
// ex16 -m ../data/amr-hex.mesh -o 2 -r 0
//
// Description: This example solves a time dependent nonlinear heat equation
// problem of the form du/dt = C(u), with a non-linear diffusion
// operator C(u) = \nabla \cdot (\kappa + \alpha u) \nabla u.
//
// The example demonstrates the use of nonlinear operators (the
// class ConductionOperator defining C(u)), as well as their
// implicit time integration. Note that implementing the method
// ConductionOperator::ImplicitSolve is the only requirement for
// high-order implicit (SDIRK) time integration. In this example,
// the diffusion operator is linearized by evaluating with the
// lagged solution from the previous timestep, so there is only
// a linear solve.
//
// We recommend viewing examples 2, 9 and 10 before viewing this
// example.
#include "mfem.hpp"
#include <fstream>
#include <iostream>
using namespace std;
using namespace mfem;
/** After spatial discretization, the conduction model can be written as:
*
* du/dt = M^{-1}(-Ku)
*
* where u is the vector representing the temperature, M is the mass matrix,
* and K is the diffusion operator with diffusivity depending on u:
* (\kappa + \alpha u).
*
* Class ConductionOperator represents the right-hand side of the above ODE.
*/
class ConductionOperator : public TimeDependentOperator
{
protected:
FiniteElementSpace &fespace;
Array<int> ess_tdof_list; // this list remains empty for pure Neumann b.c.
BilinearForm *M;
BilinearForm *K;
SparseMatrix Mmat, Kmat;
SparseMatrix *T; // T = M + dt K
real_t current_dt;
CGSolver M_solver; // Krylov solver for inverting the mass matrix M
DSmoother M_prec; // Preconditioner for the mass matrix M
CGSolver T_solver; // Implicit solver for T = M + dt K
DSmoother T_prec; // Preconditioner for the implicit solver
real_t alpha, kappa;
mutable Vector z; // auxiliary vector
public:
ConductionOperator(FiniteElementSpace &f, real_t alpha, real_t kappa,
const Vector &u);
virtual void Mult(const Vector &u, Vector &du_dt) const;
/** Solve the Backward-Euler equation: k = f(u + dt*k, t), for the unknown k.
This is the only requirement for high-order SDIRK implicit integration.*/
virtual void ImplicitSolve(const real_t dt, const Vector &u, Vector &k);
/// Update the diffusion BilinearForm K using the given true-dof vector `u`.
void SetParameters(const Vector &u);
virtual ~ConductionOperator();
};
real_t InitialTemperature(const Vector &x);
int main(int argc, char *argv[])
{
// 1. Parse command-line options.
const char *mesh_file = "../data/star.mesh";
int ref_levels = 2;
int order = 2;
int ode_solver_type = 3;
real_t t_final = 0.5;
real_t dt = 1.0e-2;
real_t alpha = 1.0e-2;
real_t kappa = 0.5;
bool visualization = true;
bool visit = false;
int vis_steps = 5;
int precision = 8;
cout.precision(precision);
OptionsParser args(argc, argv);
args.AddOption(&mesh_file, "-m", "--mesh",
"Mesh file to use.");
args.AddOption(&ref_levels, "-r", "--refine",
"Number of times to refine the mesh uniformly.");
args.AddOption(&order, "-o", "--order",
"Order (degree) of the finite elements.");
args.AddOption(&ode_solver_type, "-s", "--ode-solver",
"ODE solver: 1 - Backward Euler, 2 - SDIRK2, 3 - SDIRK3,\n\t"
"\t 11 - Forward Euler, 12 - RK2, 13 - RK3 SSP, 14 - RK4.");
args.AddOption(&t_final, "-tf", "--t-final",
"Final time; start time is 0.");
args.AddOption(&dt, "-dt", "--time-step",
"Time step.");
args.AddOption(&alpha, "-a", "--alpha",
"Alpha coefficient.");
args.AddOption(&kappa, "-k", "--kappa",
"Kappa coefficient offset.");
args.AddOption(&visualization, "-vis", "--visualization", "-no-vis",
"--no-visualization",
"Enable or disable GLVis visualization.");
args.AddOption(&visit, "-visit", "--visit-datafiles", "-no-visit",
"--no-visit-datafiles",
"Save data files for VisIt (visit.llnl.gov) visualization.");
args.AddOption(&vis_steps, "-vs", "--visualization-steps",
"Visualize every n-th timestep.");
args.Parse();
if (!args.Good())
{
args.PrintUsage(cout);
return 1;
}
args.PrintOptions(cout);
// 2. Read the mesh from the given mesh file. We can handle triangular,
// quadrilateral, tetrahedral and hexahedral meshes with the same code.
Mesh *mesh = new Mesh(mesh_file, 1, 1);
int dim = mesh->Dimension();
// 3. Define the ODE solver used for time integration. Several implicit
// singly diagonal implicit Runge-Kutta (SDIRK) methods, as well as
// explicit Runge-Kutta methods are available.
ODESolver *ode_solver;
switch (ode_solver_type)
{
// Implicit L-stable methods
case 1: ode_solver = new BackwardEulerSolver; break;
case 2: ode_solver = new SDIRK23Solver(2); break;
case 3: ode_solver = new SDIRK33Solver; break;
// Explicit methods
case 11: ode_solver = new ForwardEulerSolver; break;
case 12: ode_solver = new RK2Solver(0.5); break; // midpoint method
case 13: ode_solver = new RK3SSPSolver; break;
case 14: ode_solver = new RK4Solver; break;
case 15: ode_solver = new GeneralizedAlphaSolver(0.5); break;
// Implicit A-stable methods (not L-stable)
case 22: ode_solver = new ImplicitMidpointSolver; break;
case 23: ode_solver = new SDIRK23Solver; break;
case 24: ode_solver = new SDIRK34Solver; break;
default:
cout << "Unknown ODE solver type: " << ode_solver_type << '\n';
delete mesh;
return 3;
}
// 4. Refine the mesh to increase the resolution. In this example we do
// 'ref_levels' of uniform refinement, where 'ref_levels' is a
// command-line parameter.
for (int lev = 0; lev < ref_levels; lev++)
{
mesh->UniformRefinement();
}
// 5. Define the vector finite element space representing the current and the
// initial temperature, u_ref.
H1_FECollection fe_coll(order, dim);
FiniteElementSpace fespace(mesh, &fe_coll);
int fe_size = fespace.GetTrueVSize();
cout << "Number of temperature unknowns: " << fe_size << endl;
GridFunction u_gf(&fespace);
// 6. Set the initial conditions for u. All boundaries are considered
// natural.
FunctionCoefficient u_0(InitialTemperature);
u_gf.ProjectCoefficient(u_0);
Vector u;
u_gf.GetTrueDofs(u);
// 7. Initialize the conduction operator and the visualization.
ConductionOperator oper(fespace, alpha, kappa, u);
u_gf.SetFromTrueDofs(u);
{
ofstream omesh("ex16.mesh");
omesh.precision(precision);
mesh->Print(omesh);
ofstream osol("ex16-init.gf");
osol.precision(precision);
u_gf.Save(osol);
}
VisItDataCollection visit_dc("Example16", mesh);
visit_dc.RegisterField("temperature", &u_gf);
if (visit)
{
visit_dc.SetCycle(0);
visit_dc.SetTime(0.0);
visit_dc.Save();
}
socketstream sout;
if (visualization)
{
char vishost[] = "localhost";
int visport = 19916;
sout.open(vishost, visport);
if (!sout)
{
cout << "Unable to connect to GLVis server at "
<< vishost << ':' << visport << endl;
visualization = false;
cout << "GLVis visualization disabled.\n";
}
else
{
sout.precision(precision);
sout << "solution\n" << *mesh << u_gf;
sout << "pause\n";
sout << flush;
cout << "GLVis visualization paused."
<< " Press space (in the GLVis window) to resume it.\n";
}
}
// 8. Perform time-integration (looping over the time iterations, ti, with a
// time-step dt).
ode_solver->Init(oper);
real_t t = 0.0;
bool last_step = false;
for (int ti = 1; !last_step; ti++)
{
if (t + dt >= t_final - dt/2)
{
last_step = true;
}
ode_solver->Step(u, t, dt);
if (last_step || (ti % vis_steps) == 0)
{
cout << "step " << ti << ", t = " << t << endl;
u_gf.SetFromTrueDofs(u);
if (visualization)
{
sout << "solution\n" << *mesh << u_gf << flush;
}
if (visit)
{
visit_dc.SetCycle(ti);
visit_dc.SetTime(t);
visit_dc.Save();
}
}
oper.SetParameters(u);
}
// 9. Save the final solution. This output can be viewed later using GLVis:
// "glvis -m ex16.mesh -g ex16-final.gf".
{
ofstream osol("ex16-final.gf");
osol.precision(precision);
u_gf.Save(osol);
}
// 10. Free the used memory.
delete ode_solver;
delete mesh;
return 0;
}
ConductionOperator::ConductionOperator(FiniteElementSpace &f, real_t al,
real_t kap, const Vector &u)
: TimeDependentOperator(f.GetTrueVSize(), (real_t) 0.0), fespace(f),
M(NULL), K(NULL), T(NULL), current_dt(0.0), z(height)
{
const real_t rel_tol = 1e-8;
M = new BilinearForm(&fespace);
M->AddDomainIntegrator(new MassIntegrator());
M->Assemble();
M->FormSystemMatrix(ess_tdof_list, Mmat);
M_solver.iterative_mode = false;
M_solver.SetRelTol(rel_tol);
M_solver.SetAbsTol(0.0);
M_solver.SetMaxIter(30);
M_solver.SetPrintLevel(0);
M_solver.SetPreconditioner(M_prec);
M_solver.SetOperator(Mmat);
alpha = al;
kappa = kap;
T_solver.iterative_mode = false;
T_solver.SetRelTol(rel_tol);
T_solver.SetAbsTol(0.0);
T_solver.SetMaxIter(100);
T_solver.SetPrintLevel(0);
T_solver.SetPreconditioner(T_prec);
SetParameters(u);
}
void ConductionOperator::Mult(const Vector &u, Vector &du_dt) const
{
// Compute:
// du_dt = M^{-1}*-Ku
// for du_dt, where K is linearized by using u from the previous timestep
Kmat.Mult(u, z);
z.Neg(); // z = -z
M_solver.Mult(z, du_dt);
}
void ConductionOperator::ImplicitSolve(const real_t dt,
const Vector &u, Vector &du_dt)
{
// Solve the equation:
// du_dt = M^{-1}*[-K(u + dt*du_dt)]
// for du_dt, where K is linearized by using u from the previous timestep
if (!T)
{
T = Add(1.0, Mmat, dt, Kmat);
current_dt = dt;
T_solver.SetOperator(*T);
}
MFEM_VERIFY(dt == current_dt, ""); // SDIRK methods use the same dt
Kmat.Mult(u, z);
z.Neg();
T_solver.Mult(z, du_dt);
}
void ConductionOperator::SetParameters(const Vector &u)
{
GridFunction u_alpha_gf(&fespace);
u_alpha_gf.SetFromTrueDofs(u);
for (int i = 0; i < u_alpha_gf.Size(); i++)
{
u_alpha_gf(i) = kappa + alpha*u_alpha_gf(i);
}
delete K;
K = new BilinearForm(&fespace);
GridFunctionCoefficient u_coeff(&u_alpha_gf);
K->AddDomainIntegrator(new DiffusionIntegrator(u_coeff));
K->Assemble();
K->FormSystemMatrix(ess_tdof_list, Kmat);
delete T;
T = NULL; // re-compute T on the next ImplicitSolve
}
ConductionOperator::~ConductionOperator()
{
delete T;
delete M;
delete K;
}
real_t InitialTemperature(const Vector &x)
{
if (x.Norml2() < 0.5)
{
return 2.0;
}
else
{
return 1.0;
}
}
|