1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
|
// MFEM Example 18 - Parallel Version
//
// Compile with: make ex18p
//
// Sample runs:
//
// mpirun -np 4 ex18p -p 1 -rs 2 -rp 1 -o 1 -s 3
// mpirun -np 4 ex18p -p 1 -rs 1 -rp 1 -o 3 -s 4
// mpirun -np 4 ex18p -p 1 -rs 1 -rp 1 -o 5 -s 6
// mpirun -np 4 ex18p -p 2 -rs 1 -rp 1 -o 1 -s 3 -mf
// mpirun -np 4 ex18p -p 2 -rs 1 -rp 1 -o 3 -s 3 -mf
//
// Description: This example code solves the compressible Euler system of
// equations, a model nonlinear hyperbolic PDE, with a
// discontinuous Galerkin (DG) formulation in parallel.
//
// (u_t, v)_T - (F(u), ∇ v)_T + <F̂(u,n), [[v]]>_F = 0
//
// where (⋅,⋅)_T is volume integration, and <⋅,⋅>_F is face
// integration, F is the Euler flux function, and F̂ is the
// numerical flux.
//
// Specifically, it solves for an exact solution of the equations
// whereby a vortex is transported by a uniform flow. Since all
// boundaries are periodic here, the method's accuracy can be
// assessed by measuring the difference between the solution and
// the initial condition at a later time when the vortex returns
// to its initial location.
//
// Note that as the order of the spatial discretization increases,
// the timestep must become smaller. This example currently uses a
// simple estimate derived by Cockburn and Shu for the 1D RKDG
// method. An additional factor can be tuned by passing the --cfl
// (or -c shorter) flag.
//
// The example demonstrates usage of DGHyperbolicConservationLaws
// that wraps NonlinearFormIntegrators containing element and face
// integration schemes. In this case the system also involves an
// external approximate Riemann solver for the DG interface flux.
// By default, weak-divergence is pre-assembled in element-wise
// manner, which corresponds to (I_h(F(u_h)), ∇ v). This yields
// better performance and similar accuracy for the included test
// problems. This can be turned off and use nonlinear assembly
// similar to matrix-free assembly when -mf flag is provided.
// It also demonstrates how to use GLVis for in-situ visualization
// of vector grid function and how to set top-view.
//
// We recommend viewing examples 9, 14 and 17 before viewing this
// example.
#include "mfem.hpp"
#include <fstream>
#include <iostream>
#include <sstream>
#include "ex18.hpp"
using namespace std;
using namespace mfem;
int main(int argc, char *argv[])
{
// 0. Parallel setup
Mpi::Init(argc, argv);
const int numProcs = Mpi::WorldSize();
const int myRank = Mpi::WorldRank();
Hypre::Init();
// 1. Parse command-line options.
int problem = 1;
const real_t specific_heat_ratio = 1.4;
const real_t gas_constant = 1.0;
string mesh_file = "";
int IntOrderOffset = 1;
int ser_ref_levels = 0;
int par_ref_levels = 1;
int order = 3;
int ode_solver_type = 4;
real_t t_final = 2.0;
real_t dt = -0.01;
real_t cfl = 0.3;
bool visualization = true;
bool preassembleWeakDiv = true;
int vis_steps = 50;
int precision = 8;
cout.precision(precision);
OptionsParser args(argc, argv);
args.AddOption(&mesh_file, "-m", "--mesh",
"Mesh file to use. If not provided, then a periodic square"
" mesh will be used.");
args.AddOption(&problem, "-p", "--problem",
"Problem setup to use. See EulerInitialCondition().");
args.AddOption(&ser_ref_levels, "-rs", "--serial-refine",
"Number of times to refine the serial mesh uniformly.");
args.AddOption(&par_ref_levels, "-rp", "--parallel-refine",
"Number of times to refine the parallel mesh uniformly.");
args.AddOption(&order, "-o", "--order",
"Order (degree) of the finite elements.");
args.AddOption(&ode_solver_type, "-s", "--ode-solver",
"ODE solver: 1 - Forward Euler,\n\t"
" 2 - RK2 SSP, 3 - RK3 SSP, 4 - RK4, 6 - RK6.");
args.AddOption(&t_final, "-tf", "--t-final", "Final time; start time is 0.");
args.AddOption(&dt, "-dt", "--time-step",
"Time step. Positive number skips CFL timestep calculation.");
args.AddOption(&cfl, "-c", "--cfl-number",
"CFL number for timestep calculation.");
args.AddOption(&visualization, "-vis", "--visualization", "-no-vis",
"--no-visualization",
"Enable or disable GLVis visualization.");
args.AddOption(&preassembleWeakDiv, "-ea", "--element-assembly-divergence",
"-mf", "--matrix-free-divergence",
"Weak divergence assembly level\n"
" ea - Element assembly with interpolated F\n"
" mf - Nonlinear assembly in matrix-free manner");
args.AddOption(&vis_steps, "-vs", "--visualization-steps",
"Visualize every n-th timestep.");
args.ParseCheck();
// 2. Read the mesh from the given mesh file. When the user does not provide
// mesh file, use the default mesh file for the problem.
Mesh mesh = mesh_file.empty() ? EulerMesh(problem) : Mesh(mesh_file);
const int dim = mesh.Dimension();
const int num_equations = dim + 2;
// Refine the mesh to increase the resolution. In this example we do
// 'ser_ref_levels' of uniform refinement, where 'ser_ref_levels' is a
// command-line parameter.
for (int lev = 0; lev < ser_ref_levels; lev++)
{
mesh.UniformRefinement();
}
// Define a parallel mesh by a partitioning of the serial mesh. Refine this
// mesh further in parallel to increase the resolution. Once the parallel
// mesh is defined, the serial mesh can be deleted.
ParMesh pmesh = ParMesh(MPI_COMM_WORLD, mesh);
mesh.Clear();
// Refine the mesh to increase the resolution. In this example we do
// 'par_ref_levels' of uniform refinement, where 'par_ref_levels' is a
// command-line parameter.
for (int lev = 0; lev < par_ref_levels; lev++)
{
pmesh.UniformRefinement();
}
// 3. Define the ODE solver used for time integration. Several explicit
// Runge-Kutta methods are available.
ODESolver *ode_solver = NULL;
switch (ode_solver_type)
{
case 1: ode_solver = new ForwardEulerSolver; break;
case 2: ode_solver = new RK2Solver(1.0); break;
case 3: ode_solver = new RK3SSPSolver; break;
case 4: ode_solver = new RK4Solver; break;
case 6: ode_solver = new RK6Solver; break;
default:
cout << "Unknown ODE solver type: " << ode_solver_type << '\n';
return 3;
}
// 4. Define the discontinuous DG finite element space of the given
// polynomial order on the refined mesh.
DG_FECollection fec(order, dim);
// Finite element space for a scalar (thermodynamic quantity)
ParFiniteElementSpace fes(&pmesh, &fec);
// Finite element space for a mesh-dim vector quantity (momentum)
ParFiniteElementSpace dfes(&pmesh, &fec, dim, Ordering::byNODES);
// Finite element space for all variables together (total thermodynamic state)
ParFiniteElementSpace vfes(&pmesh, &fec, num_equations, Ordering::byNODES);
// This example depends on this ordering of the space.
MFEM_ASSERT(fes.GetOrdering() == Ordering::byNODES, "");
HYPRE_BigInt glob_size = vfes.GlobalTrueVSize();
if (Mpi::Root())
{
cout << "Number of unknowns: " << glob_size << endl;
}
// 5. Define the initial conditions, save the corresponding mesh and grid
// functions to files. These can be opened with GLVis using:
// "glvis -np 4 -m euler-mesh -g euler-1-init" (for x-momentum).
// Initialize the state.
VectorFunctionCoefficient u0 = EulerInitialCondition(problem,
specific_heat_ratio,
gas_constant);
ParGridFunction sol(&vfes);
sol.ProjectCoefficient(u0);
ParGridFunction mom(&dfes, sol.GetData() + fes.GetNDofs());
// Output the initial solution.
{
ostringstream mesh_name;
mesh_name << "euler-mesh." << setfill('0') << setw(6) << Mpi::WorldRank();
ofstream mesh_ofs(mesh_name.str().c_str());
mesh_ofs.precision(precision);
mesh_ofs << pmesh;
for (int k = 0; k < num_equations; k++)
{
ParGridFunction uk(&fes, sol.GetData() + k * fes.GetNDofs());
ostringstream sol_name;
sol_name << "euler-" << k << "-init." << setfill('0') << setw(6)
<< Mpi::WorldRank();
ofstream sol_ofs(sol_name.str().c_str());
sol_ofs.precision(precision);
sol_ofs << uk;
}
}
// 6. Set up the nonlinear form with euler flux and numerical flux
EulerFlux flux(dim, specific_heat_ratio);
RusanovFlux numericalFlux(flux);
DGHyperbolicConservationLaws euler(
vfes, std::unique_ptr<HyperbolicFormIntegrator>(
new HyperbolicFormIntegrator(numericalFlux, IntOrderOffset)),
preassembleWeakDiv);
// 7. Visualize momentum with its magnitude
socketstream sout;
if (visualization)
{
char vishost[] = "localhost";
int visport = 19916;
sout.open(vishost, visport);
if (!sout)
{
visualization = false;
if (Mpi::Root())
{
cout << "Unable to connect to GLVis server at " << vishost << ':'
<< visport << endl;
cout << "GLVis visualization disabled.\n";
}
}
else
{
sout.precision(precision);
// Plot magnitude of vector-valued momentum
sout << "parallel " << numProcs << " " << myRank << "\n";
sout << "solution\n" << pmesh << mom;
sout << "window_title 'momentum, t = 0'\n";
sout << "view 0 0\n"; // view from top
sout << "keys jlm\n"; // turn off perspective and light, show mesh
sout << "pause\n";
sout << flush;
if (Mpi::Root())
{
cout << "GLVis visualization paused."
<< " Press space (in the GLVis window) to resume it.\n";
}
MPI_Barrier(pmesh.GetComm());
}
}
// 8. Time integration
// When dt is not specified, use CFL condition.
// Compute h_min and initial maximum characteristic speed
real_t hmin = infinity();
if (cfl > 0)
{
for (int i = 0; i < pmesh.GetNE(); i++)
{
hmin = min(pmesh.GetElementSize(i, 1), hmin);
}
MPI_Allreduce(MPI_IN_PLACE, &hmin, 1, MPITypeMap<real_t>::mpi_type, MPI_MIN,
pmesh.GetComm());
// Find a safe dt, using a temporary vector. Calling Mult() computes the
// maximum char speed at all quadrature points on all faces (and all
// elements with -mf).
Vector z(sol.Size());
euler.Mult(sol, z);
real_t max_char_speed = euler.GetMaxCharSpeed();
MPI_Allreduce(MPI_IN_PLACE, &max_char_speed, 1, MPITypeMap<real_t>::mpi_type,
MPI_MAX,
pmesh.GetComm());
dt = cfl * hmin / max_char_speed / (2 * order + 1);
}
// Start the timer.
tic_toc.Clear();
tic_toc.Start();
// Init time integration
real_t t = 0.0;
euler.SetTime(t);
ode_solver->Init(euler);
// Integrate in time.
bool done = false;
for (int ti = 0; !done;)
{
real_t dt_real = min(dt, t_final - t);
ode_solver->Step(sol, t, dt_real);
if (cfl > 0) // update time step size with CFL
{
real_t max_char_speed = euler.GetMaxCharSpeed();
MPI_Allreduce(MPI_IN_PLACE, &max_char_speed, 1, MPITypeMap<real_t>::mpi_type,
MPI_MAX,
pmesh.GetComm());
dt = cfl * hmin / max_char_speed / (2 * order + 1);
}
ti++;
done = (t >= t_final - 1e-8 * dt);
if (done || ti % vis_steps == 0)
{
if (Mpi::Root())
{
cout << "time step: " << ti << ", time: " << t << endl;
}
if (visualization)
{
sout << "window_title 'momentum, t = " << t << "'\n";
sout << "parallel " << numProcs << " " << myRank << "\n";
sout << "solution\n" << pmesh << mom << flush;
}
}
}
tic_toc.Stop();
if (Mpi::Root())
{
cout << " done, " << tic_toc.RealTime() << "s." << endl;
}
// 9. Save the final solution. This output can be viewed later using GLVis:
// "glvis -np 4 -m euler-mesh-final -g euler-1-final" (for x-momentum).
{
ostringstream mesh_name;
mesh_name << "euler-mesh-final." << setfill('0') << setw(6)
<< Mpi::WorldRank();
ofstream mesh_ofs(mesh_name.str().c_str());
mesh_ofs.precision(precision);
mesh_ofs << pmesh;
for (int k = 0; k < num_equations; k++)
{
ParGridFunction uk(&fes, sol.GetData() + k * fes.GetNDofs());
ostringstream sol_name;
sol_name << "euler-" << k << "-final." << setfill('0') << setw(6)
<< Mpi::WorldRank();
ofstream sol_ofs(sol_name.str().c_str());
sol_ofs.precision(precision);
sol_ofs << uk;
}
}
// 10. Compute the L2 solution error summed for all components.
const real_t error = sol.ComputeLpError(2, u0);
if (Mpi::Root())
{
cout << "Solution error: " << error << endl;
}
// Free the used memory.
delete ode_solver;
return 0;
}
|