1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
|
// MFEM Example 1 - Parallel Version
//
// Compile with: make ex1p
//
// Sample runs: mpirun -np 4 ex1p -m ../data/square-disc.mesh
// mpirun -np 4 ex1p -m ../data/star.mesh
// mpirun -np 4 ex1p -m ../data/star-mixed.mesh
// mpirun -np 4 ex1p -m ../data/escher.mesh
// mpirun -np 4 ex1p -m ../data/fichera.mesh
// mpirun -np 4 ex1p -m ../data/fichera-mixed.mesh
// mpirun -np 4 ex1p -m ../data/toroid-wedge.mesh
// mpirun -np 4 ex1p -m ../data/octahedron.mesh -o 1
// mpirun -np 4 ex1p -m ../data/periodic-annulus-sector.msh
// mpirun -np 4 ex1p -m ../data/periodic-torus-sector.msh
// mpirun -np 4 ex1p -m ../data/square-disc-p2.vtk -o 2
// mpirun -np 4 ex1p -m ../data/square-disc-p3.mesh -o 3
// mpirun -np 4 ex1p -m ../data/square-disc-nurbs.mesh -o -1
// mpirun -np 4 ex1p -m ../data/star-mixed-p2.mesh -o 2
// mpirun -np 4 ex1p -m ../data/disc-nurbs.mesh -o -1
// mpirun -np 4 ex1p -m ../data/pipe-nurbs.mesh -o -1
// mpirun -np 4 ex1p -m ../data/ball-nurbs.mesh -o 2
// mpirun -np 4 ex1p -m ../data/fichera-mixed-p2.mesh -o 2
// mpirun -np 4 ex1p -m ../data/star-surf.mesh
// mpirun -np 4 ex1p -m ../data/square-disc-surf.mesh
// mpirun -np 4 ex1p -m ../data/inline-segment.mesh
// mpirun -np 4 ex1p -m ../data/amr-quad.mesh
// mpirun -np 4 ex1p -m ../data/amr-hex.mesh
// mpirun -np 4 ex1p -m ../data/mobius-strip.mesh
// mpirun -np 4 ex1p -m ../data/mobius-strip.mesh -o -1 -sc
//
// Device sample runs:
// mpirun -np 4 ex1p -pa -d cuda
// mpirun -np 4 ex1p -fa -d cuda
// mpirun -np 4 ex1p -pa -d occa-cuda
// mpirun -np 4 ex1p -pa -d raja-omp
// mpirun -np 4 ex1p -pa -d ceed-cpu
// mpirun -np 4 ex1p -pa -d ceed-cpu -o 4 -a
// mpirun -np 4 ex1p -pa -d ceed-cpu -m ../data/square-mixed.mesh
// mpirun -np 4 ex1p -pa -d ceed-cpu -m ../data/fichera-mixed.mesh
// * mpirun -np 4 ex1p -pa -d ceed-cuda
// * mpirun -np 4 ex1p -pa -d ceed-hip
// mpirun -np 4 ex1p -pa -d ceed-cuda:/gpu/cuda/shared
// mpirun -np 4 ex1p -pa -d ceed-cuda:/gpu/cuda/shared -m ../data/square-mixed.mesh
// mpirun -np 4 ex1p -pa -d ceed-cuda:/gpu/cuda/shared -m ../data/fichera-mixed.mesh
// mpirun -np 4 ex1p -m ../data/beam-tet.mesh -pa -d ceed-cpu
//
// Description: This example code demonstrates the use of MFEM to define a
// simple finite element discretization of the Laplace problem
// -Delta u = 1 with homogeneous Dirichlet boundary conditions.
// Specifically, we discretize using a FE space of the specified
// order, or if order < 1 using an isoparametric/isogeometric
// space (i.e. quadratic for quadratic curvilinear mesh, NURBS for
// NURBS mesh, etc.)
//
// The example highlights the use of mesh refinement, finite
// element grid functions, as well as linear and bilinear forms
// corresponding to the left-hand side and right-hand side of the
// discrete linear system. We also cover the explicit elimination
// of essential boundary conditions, static condensation, and the
// optional connection to the GLVis tool for visualization.
#include "mfem.hpp"
#include <fstream>
#include <iostream>
using namespace std;
using namespace mfem;
int main(int argc, char *argv[])
{
// 1. Initialize MPI and HYPRE.
Mpi::Init();
int num_procs = Mpi::WorldSize();
int myid = Mpi::WorldRank();
Hypre::Init();
// 2. Parse command-line options.
const char *mesh_file = "../data/star.mesh";
int order = 1;
bool static_cond = false;
bool pa = false;
bool fa = false;
const char *device_config = "cpu";
bool visualization = true;
bool algebraic_ceed = false;
OptionsParser args(argc, argv);
args.AddOption(&mesh_file, "-m", "--mesh",
"Mesh file to use.");
args.AddOption(&order, "-o", "--order",
"Finite element order (polynomial degree) or -1 for"
" isoparametric space.");
args.AddOption(&static_cond, "-sc", "--static-condensation", "-no-sc",
"--no-static-condensation", "Enable static condensation.");
args.AddOption(&pa, "-pa", "--partial-assembly", "-no-pa",
"--no-partial-assembly", "Enable Partial Assembly.");
args.AddOption(&fa, "-fa", "--full-assembly", "-no-fa",
"--no-full-assembly", "Enable Full Assembly.");
args.AddOption(&device_config, "-d", "--device",
"Device configuration string, see Device::Configure().");
#ifdef MFEM_USE_CEED
args.AddOption(&algebraic_ceed, "-a", "--algebraic",
"-no-a", "--no-algebraic",
"Use algebraic Ceed solver");
#endif
args.AddOption(&visualization, "-vis", "--visualization", "-no-vis",
"--no-visualization",
"Enable or disable GLVis visualization.");
args.Parse();
if (!args.Good())
{
if (myid == 0)
{
args.PrintUsage(cout);
}
return 1;
}
if (myid == 0)
{
args.PrintOptions(cout);
}
// 3. Enable hardware devices such as GPUs, and programming models such as
// CUDA, OCCA, RAJA and OpenMP based on command line options.
Device device(device_config);
if (myid == 0) { device.Print(); }
// 4. Read the (serial) mesh from the given mesh file on all processors. We
// can handle triangular, quadrilateral, tetrahedral, hexahedral, surface
// and volume meshes with the same code.
Mesh mesh(mesh_file, 1, 1);
int dim = mesh.Dimension();
// 5. Refine the serial mesh on all processors to increase the resolution. In
// this example we do 'ref_levels' of uniform refinement. We choose
// 'ref_levels' to be the largest number that gives a final mesh with no
// more than 10,000 elements.
{
int ref_levels =
(int)floor(log(10000./mesh.GetNE())/log(2.)/dim);
for (int l = 0; l < ref_levels; l++)
{
mesh.UniformRefinement();
}
}
// 6. Define a parallel mesh by a partitioning of the serial mesh. Refine
// this mesh further in parallel to increase the resolution. Once the
// parallel mesh is defined, the serial mesh can be deleted.
ParMesh pmesh(MPI_COMM_WORLD, mesh);
mesh.Clear();
{
int par_ref_levels = 2;
for (int l = 0; l < par_ref_levels; l++)
{
pmesh.UniformRefinement();
}
}
// 7. Define a parallel finite element space on the parallel mesh. Here we
// use continuous Lagrange finite elements of the specified order. If
// order < 1, we instead use an isoparametric/isogeometric space.
FiniteElementCollection *fec;
bool delete_fec;
if (order > 0)
{
fec = new H1_FECollection(order, dim);
delete_fec = true;
}
else if (pmesh.GetNodes())
{
fec = pmesh.GetNodes()->OwnFEC();
delete_fec = false;
if (myid == 0)
{
cout << "Using isoparametric FEs: " << fec->Name() << endl;
}
}
else
{
fec = new H1_FECollection(order = 1, dim);
delete_fec = true;
}
ParFiniteElementSpace fespace(&pmesh, fec);
HYPRE_BigInt size = fespace.GlobalTrueVSize();
if (myid == 0)
{
cout << "Number of finite element unknowns: " << size << endl;
}
// 8. Determine the list of true (i.e. parallel conforming) essential
// boundary dofs. In this example, the boundary conditions are defined
// by marking all the boundary attributes from the mesh as essential
// (Dirichlet) and converting them to a list of true dofs.
Array<int> ess_tdof_list;
if (pmesh.bdr_attributes.Size())
{
Array<int> ess_bdr(pmesh.bdr_attributes.Max());
ess_bdr = 1;
fespace.GetEssentialTrueDofs(ess_bdr, ess_tdof_list);
}
// 9. Set up the parallel linear form b(.) which corresponds to the
// right-hand side of the FEM linear system, which in this case is
// (1,phi_i) where phi_i are the basis functions in fespace.
ParLinearForm b(&fespace);
ConstantCoefficient one(1.0);
b.AddDomainIntegrator(new DomainLFIntegrator(one));
b.Assemble();
// 10. Define the solution vector x as a parallel finite element grid
// function corresponding to fespace. Initialize x with initial guess of
// zero, which satisfies the boundary conditions.
ParGridFunction x(&fespace);
x = 0.0;
// 11. Set up the parallel bilinear form a(.,.) on the finite element space
// corresponding to the Laplacian operator -Delta, by adding the
// Diffusion domain integrator.
ParBilinearForm a(&fespace);
if (pa) { a.SetAssemblyLevel(AssemblyLevel::PARTIAL); }
if (fa)
{
a.SetAssemblyLevel(AssemblyLevel::FULL);
// Sort the matrix column indices when running on GPU or with OpenMP (i.e.
// when Device::IsEnabled() returns true). This makes the results
// bit-for-bit deterministic at the cost of somewhat longer run time.
a.EnableSparseMatrixSorting(Device::IsEnabled());
}
a.AddDomainIntegrator(new DiffusionIntegrator(one));
// 12. Assemble the parallel bilinear form and the corresponding linear
// system, applying any necessary transformations such as: parallel
// assembly, eliminating boundary conditions, applying conforming
// constraints for non-conforming AMR, static condensation, etc.
if (static_cond) { a.EnableStaticCondensation(); }
a.Assemble();
OperatorPtr A;
Vector B, X;
a.FormLinearSystem(ess_tdof_list, x, b, A, X, B);
// 13. Solve the linear system A X = B.
// * With full assembly, use the BoomerAMG preconditioner from hypre.
// * With partial assembly, use Jacobi smoothing, for now.
Solver *prec = NULL;
if (pa)
{
if (UsesTensorBasis(fespace))
{
if (algebraic_ceed)
{
prec = new ceed::AlgebraicSolver(a, ess_tdof_list);
}
else
{
prec = new OperatorJacobiSmoother(a, ess_tdof_list);
}
}
}
else
{
prec = new HypreBoomerAMG;
}
CGSolver cg(MPI_COMM_WORLD);
cg.SetRelTol(1e-12);
cg.SetMaxIter(2000);
cg.SetPrintLevel(1);
if (prec) { cg.SetPreconditioner(*prec); }
cg.SetOperator(*A);
cg.Mult(B, X);
delete prec;
// 14. Recover the parallel grid function corresponding to X. This is the
// local finite element solution on each processor.
a.RecoverFEMSolution(X, b, x);
// 15. Save the refined mesh and the solution in parallel. This output can
// be viewed later using GLVis: "glvis -np <np> -m mesh -g sol".
{
ostringstream mesh_name, sol_name;
mesh_name << "mesh." << setfill('0') << setw(6) << myid;
sol_name << "sol." << setfill('0') << setw(6) << myid;
ofstream mesh_ofs(mesh_name.str().c_str());
mesh_ofs.precision(8);
pmesh.Print(mesh_ofs);
ofstream sol_ofs(sol_name.str().c_str());
sol_ofs.precision(8);
x.Save(sol_ofs);
}
// 16. Send the solution by socket to a GLVis server.
if (visualization)
{
char vishost[] = "localhost";
int visport = 19916;
socketstream sol_sock(vishost, visport);
sol_sock << "parallel " << num_procs << " " << myid << "\n";
sol_sock.precision(8);
sol_sock << "solution\n" << pmesh << x << flush;
}
// 17. Free the used memory.
if (delete_fec)
{
delete fec;
}
return 0;
}
|