1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
|
// MFEM Example 21 - Parallel Version
//
// Compile with: make ex21p
//
// Sample runs: mpirun -np 4 ex21p
// mpirun -np 4 ex21p -o 3
// mpirun -np 4 ex21p -m ../data/beam-quad.mesh
// mpirun -np 4 ex21p -m ../data/beam-quad.mesh -o 3
// mpirun -np 4 ex21p -m ../data/beam-tet.mesh
// mpirun -np 4 ex21p -m ../data/beam-tet.mesh -o 2
// mpirun -np 4 ex21p -m ../data/beam-hex.mesh
// mpirun -np 4 ex21p -m ../data/beam-hex.mesh -o 2
//
// Description: This is a version of Example 2p with a simple adaptive mesh
// refinement loop. The problem being solved is again the linear
// elasticity describing a multi-material cantilever beam.
// The problem is solved on a sequence of meshes which
// are locally refined in a conforming (triangles, tetrahedrons)
// or non-conforming (quadrilaterals, hexahedra) manner according
// to a simple ZZ error estimator.
//
// The example demonstrates MFEM's capability to work with both
// conforming and nonconforming refinements, in 2D and 3D, on
// linear and curved meshes. Interpolation of functions from
// coarse to fine meshes, as well as persistent GLVis
// visualization are also illustrated.
//
// We recommend viewing Examples 2p and 6p before viewing this
// example.
#include "mfem.hpp"
#include <fstream>
#include <iostream>
using namespace std;
using namespace mfem;
int main(int argc, char *argv[])
{
// 0. Initialize MPI and HYPRE.
Mpi::Init(argc, argv);
int num_procs = Mpi::WorldSize();
int myid = Mpi::WorldRank();
Hypre::Init();
// 1. Parse command-line options.
const char *mesh_file = "../data/beam-tri.mesh";
int serial_ref_levels = 0;
int order = 1;
bool static_cond = false;
bool visualization = 1;
OptionsParser args(argc, argv);
args.AddOption(&mesh_file, "-m", "--mesh",
"Mesh file to use.");
args.AddOption(&serial_ref_levels, "-rs", "--refine-serial",
"Number of uniform serial refinements (before parallel"
" partitioning)");
args.AddOption(&order, "-o", "--order",
"Finite element order (polynomial degree).");
args.AddOption(&static_cond, "-sc", "--static-condensation", "-no-sc",
"--no-static-condensation", "Enable static condensation.");
args.AddOption(&visualization, "-vis", "--visualization", "-no-vis",
"--no-visualization",
"Enable or disable GLVis visualization.");
args.Parse();
if (!args.Good())
{
if (myid == 0)
{
args.PrintUsage(cout);
}
return 1;
}
if (myid == 0)
{
args.PrintOptions(cout);
}
// 2. Read the mesh from the given mesh file. We can handle triangular,
// quadrilateral, tetrahedral, and hexahedral meshes with the same code.
Mesh mesh(mesh_file, 1, 1);
int dim = mesh.Dimension();
MFEM_VERIFY(mesh.SpaceDimension() == dim, "invalid mesh");
if (mesh.attributes.Max() < 2 || mesh.bdr_attributes.Max() < 2)
{
cerr << "\nInput mesh should have at least two materials and "
<< "two boundary attributes! (See schematic in ex2.cpp)\n"
<< endl;
return 3;
}
// 3. Refine the mesh before parallel partitioning. Since a NURBS mesh can
// currently only be refined uniformly, we need to convert it to a
// piecewise-polynomial curved mesh. First we refine the NURBS mesh a bit
// more and then project the curvature to quadratic Nodes.
if (mesh.NURBSext && serial_ref_levels == 0)
{
serial_ref_levels = 2;
}
for (int i = 0; i < serial_ref_levels; i++)
{
mesh.UniformRefinement();
}
if (mesh.NURBSext)
{
mesh.SetCurvature(2);
}
mesh.EnsureNCMesh();
ParMesh pmesh(MPI_COMM_WORLD, mesh);
mesh.Clear();
// 4. Define a finite element space on the mesh. The polynomial order is
// one (linear) by default, but this can be changed on the command line.
H1_FECollection fec(order, dim);
ParFiniteElementSpace fespace(&pmesh, &fec, dim);
// 5. As in Example 2, we set up the linear form b(.) which corresponds to
// the right-hand side of the FEM linear system. In this case, b_i equals
// the boundary integral of f*phi_i where f represents a "pull down"
// force on the Neumann part of the boundary and phi_i are the basis
// functions in the finite element fespace. The force is defined by the
// VectorArrayCoefficient object f, which is a vector of Coefficient
// objects. The fact that f is non-zero on boundary attribute 2 is
// indicated by the use of piece-wise constants coefficient for its last
// component. We don't assemble the discrete problem yet, this will be
// done in the main loop.
VectorArrayCoefficient f(dim);
for (int i = 0; i < dim-1; i++)
{
f.Set(i, new ConstantCoefficient(0.0));
}
{
Vector pull_force(pmesh.bdr_attributes.Max());
pull_force = 0.0;
pull_force(1) = -1.0e-2;
f.Set(dim-1, new PWConstCoefficient(pull_force));
}
ParLinearForm b(&fespace);
b.AddDomainIntegrator(new VectorBoundaryLFIntegrator(f));
// 6. Set up the bilinear form a(.,.) on the finite element space
// corresponding to the linear elasticity integrator with piece-wise
// constants coefficient lambda and mu.
Vector lambda(pmesh.attributes.Max());
lambda = 1.0;
lambda(0) = lambda(1)*50;
PWConstCoefficient lambda_func(lambda);
Vector mu(pmesh.attributes.Max());
mu = 1.0;
mu(0) = mu(1)*50;
PWConstCoefficient mu_func(mu);
ParBilinearForm a(&fespace);
BilinearFormIntegrator *integ =
new ElasticityIntegrator(lambda_func,mu_func);
a.AddDomainIntegrator(integ);
if (static_cond) { a.EnableStaticCondensation(); }
// 7. The solution vector x and the associated finite element grid function
// will be maintained over the AMR iterations. We initialize it to zero.
Vector zero_vec(dim);
zero_vec = 0.0;
VectorConstantCoefficient zero_vec_coeff(zero_vec);
ParGridFunction x(&fespace);
x = 0.0;
// 8. Determine the list of true (i.e. conforming) essential boundary dofs.
// In this example, the boundary conditions are defined by marking only
// boundary attribute 1 from the mesh as essential and converting it to a
// list of true dofs. The conversion to true dofs will be done in the
// main loop.
Array<int> ess_bdr(pmesh.bdr_attributes.Max());
ess_bdr = 0;
ess_bdr[0] = 1;
// 9. GLVis visualization.
char vishost[] = "localhost";
int visport = 19916;
socketstream sol_sock;
// 10. Set up an error estimator. Here we use the Zienkiewicz-Zhu estimator
// that uses the ComputeElementFlux method of the ElasticityIntegrator to
// recover a smoothed flux (stress) that is subtracted from the element
// flux to get an error indicator. We need to supply the space for the
// smoothed flux: an (H1)^tdim (i.e., vector-valued) space is used here.
// Here, tdim represents the number of components for a symmetric (dim x
// dim) tensor.
const int tdim = dim*(dim+1)/2;
L2_FECollection flux_fec(order, dim);
ParFiniteElementSpace flux_fespace(&pmesh, &flux_fec, tdim);
ParFiniteElementSpace smooth_flux_fespace(&pmesh, &fec, tdim);
L2ZienkiewiczZhuEstimator estimator(*integ, x, flux_fespace,
smooth_flux_fespace);
// 11. A refiner selects and refines elements based on a refinement strategy.
// The strategy here is to refine elements with errors larger than a
// fraction of the maximum element error. Other strategies are possible.
// The refiner will call the given error estimator.
ThresholdRefiner refiner(estimator);
refiner.SetTotalErrorFraction(0.7);
// 12. The main AMR loop. In each iteration we solve the problem on the
// current mesh, visualize the solution, and refine the mesh.
const int max_dofs = 50000;
const int max_amr_itr = 20;
for (int it = 0; it <= max_amr_itr; it++)
{
HYPRE_BigInt global_dofs = fespace.GlobalTrueVSize();
if (myid == 0)
{
cout << "\nAMR iteration " << it << endl;
cout << "Number of unknowns: " << global_dofs << endl;
}
// 13. Assemble the stiffness matrix and the right-hand side.
a.Assemble();
b.Assemble();
// 14. Set Dirichlet boundary values in the GridFunction x.
// Determine the list of Dirichlet true DOFs in the linear system.
Array<int> ess_tdof_list;
x.ProjectBdrCoefficient(zero_vec_coeff, ess_bdr);
fespace.GetEssentialTrueDofs(ess_bdr, ess_tdof_list);
// 15. Create the linear system: eliminate boundary conditions, constrain
// hanging nodes and possibly apply other transformations. The system
// will be solved for true (unconstrained) DOFs only.
HypreParMatrix A;
Vector B, X;
const int copy_interior = 1;
a.FormLinearSystem(ess_tdof_list, x, b, A, X, B, copy_interior);
// 16. Define and apply a parallel PCG solver for AX=B with the BoomerAMG
// preconditioner from hypre.
HypreBoomerAMG amg;
amg.SetPrintLevel(0);
// amg.SetSystemsOptions(dim); // optional
CGSolver pcg(A.GetComm());
pcg.SetPreconditioner(amg);
pcg.SetOperator(A);
pcg.SetRelTol(1e-6);
pcg.SetMaxIter(500);
pcg.SetPrintLevel(3); // print the first and the last iterations only
pcg.Mult(B, X);
// 17. After solving the linear system, reconstruct the solution as a
// finite element GridFunction. Constrained nodes are interpolated
// from true DOFs (it may therefore happen that x.Size() >= X.Size()).
a.RecoverFEMSolution(X, b, x);
// 18. Send solution by socket to the GLVis server.
if (visualization && it == 0)
{
sol_sock.open(vishost, visport);
sol_sock.precision(8);
}
if (visualization && sol_sock.good())
{
GridFunction nodes(&fespace), *nodes_p = &nodes;
pmesh.GetNodes(nodes);
nodes += x;
int own_nodes = 0;
pmesh.SwapNodes(nodes_p, own_nodes);
x.Neg(); // visualize the backward displacement
sol_sock << "parallel " << num_procs << ' ' << myid << '\n';
sol_sock << "solution\n" << pmesh << x << flush;
x.Neg();
pmesh.SwapNodes(nodes_p, own_nodes);
if (it == 0)
{
sol_sock << "keys '" << ((dim == 2) ? "Rjl" : "") << "m'" << endl;
}
sol_sock << "window_title 'AMR iteration: " << it << "'\n"
<< "pause" << endl;
if (myid == 0)
{
cout << "Visualization paused. "
"Press <space> in the GLVis window to continue." << endl;
}
}
if (global_dofs > max_dofs)
{
if (myid == 0)
{
cout << "Reached the maximum number of dofs. Stop." << endl;
}
break;
}
// 19. Call the refiner to modify the mesh. The refiner calls the error
// estimator to obtain element errors, then it selects elements to be
// refined and finally it modifies the mesh. The Stop() method can be
// used to determine if a stopping criterion was met.
refiner.Apply(pmesh);
if (refiner.Stop())
{
if (myid == 0)
{
cout << "Stopping criterion satisfied. Stop." << endl;
}
break;
}
// 20. Update the space to reflect the new state of the mesh. Also,
// interpolate the solution x so that it lies in the new space but
// represents the same function. This saves solver iterations later
// since we'll have a good initial guess of x in the next step.
// Internally, FiniteElementSpace::Update() calculates an
// interpolation matrix which is then used by GridFunction::Update().
fespace.Update();
x.Update();
// 21. Load balance the mesh, and update the space and solution. Currently
// available only for nonconforming meshes.
if (pmesh.Nonconforming())
{
pmesh.Rebalance();
// Update the space and the GridFunction. This time the update matrix
// redistributes the GridFunction among the processors.
fespace.Update();
x.Update();
}
// 21. Inform also the bilinear and linear forms that the space has
// changed.
a.Update();
b.Update();
}
{
ostringstream mref_name, mesh_name, sol_name;
mref_name << "ex21p_reference_mesh." << setfill('0') << setw(6) << myid;
mesh_name << "ex21p_deformed_mesh." << setfill('0') << setw(6) << myid;
sol_name << "ex21p_displacement." << setfill('0') << setw(6) << myid;
ofstream mesh_ref_out(mref_name.str().c_str());
mesh_ref_out.precision(16);
pmesh.Print(mesh_ref_out);
ofstream mesh_out(mesh_name.str().c_str());
mesh_out.precision(16);
GridFunction nodes(&fespace), *nodes_p = &nodes;
pmesh.GetNodes(nodes);
nodes += x;
int own_nodes = 0;
pmesh.SwapNodes(nodes_p, own_nodes);
pmesh.Print(mesh_out);
pmesh.SwapNodes(nodes_p, own_nodes);
ofstream x_out(sol_name.str().c_str());
x_out.precision(16);
x.Save(x_out);
}
return 0;
}
|