1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
|
// MFEM Example 24 - Parallel Version
//
// Compile with: make ex24p
//
// Sample runs: mpirun -np 4 ex24p -m ../data/star.mesh
// mpirun -np 4 ex24p -m ../data/square-disc.mesh -o 2
// mpirun -np 4 ex24p -m ../data/beam-tet.mesh
// mpirun -np 4 ex24p -m ../data/beam-hex.mesh -o 2 -pa
// mpirun -np 4 ex24p -m ../data/beam-hex.mesh -o 2 -pa -p 1
// mpirun -np 4 ex24p -m ../data/beam-hex.mesh -o 2 -pa -p 2
// mpirun -np 4 ex24p -m ../data/escher.mesh
// mpirun -np 4 ex24p -m ../data/escher.mesh -o 2
// mpirun -np 4 ex24p -m ../data/fichera.mesh
// mpirun -np 4 ex24p -m ../data/fichera-q2.vtk
// mpirun -np 4 ex24p -m ../data/fichera-q3.mesh
// mpirun -np 4 ex24p -m ../data/square-disc-nurbs.mesh
// mpirun -np 4 ex24p -m ../data/beam-hex-nurbs.mesh
// mpirun -np 4 ex24p -m ../data/amr-quad.mesh -o 2
// mpirun -np 4 ex24p -m ../data/amr-hex.mesh
//
// Device sample runs:
// mpirun -np 4 ex24p -m ../data/star.mesh -pa -d cuda
// mpirun -np 4 ex24p -m ../data/star.mesh -pa -d raja-cuda
// mpirun -np 4 ex24p -m ../data/star.mesh -pa -d raja-omp
// mpirun -np 4 ex24p -m ../data/beam-hex.mesh -pa -d cuda
//
// Description: This example code illustrates usage of mixed finite element
// spaces, with three variants:
//
// 1) (grad p, u) for p in H^1 tested against u in H(curl)
// 2) (curl v, u) for v in H(curl) tested against u in H(div), 3D
// 3) (div v, q) for v in H(div) tested against q in L_2
//
// Using different approaches, we project the gradient, curl, or
// divergence to the appropriate space.
//
// We recommend viewing examples 1, 3, and 5 before viewing this
// example.
#include "mfem.hpp"
#include <fstream>
#include <iostream>
using namespace std;
using namespace mfem;
real_t p_exact(const Vector &x);
void gradp_exact(const Vector &, Vector &);
real_t div_gradp_exact(const Vector &x);
void v_exact(const Vector &x, Vector &v);
void curlv_exact(const Vector &x, Vector &cv);
int dim;
real_t freq = 1.0, kappa;
int main(int argc, char *argv[])
{
// 1. Initialize MPI and HYPRE.
Mpi::Init(argc, argv);
int num_procs = Mpi::WorldSize();
int myid = Mpi::WorldRank();
Hypre::Init();
// 2. Parse command-line options.
const char *mesh_file = "../data/beam-hex.mesh";
int order = 1;
int prob = 0;
bool static_cond = false;
bool pa = false;
const char *device_config = "cpu";
bool visualization = 1;
OptionsParser args(argc, argv);
args.AddOption(&mesh_file, "-m", "--mesh",
"Mesh file to use.");
args.AddOption(&order, "-o", "--order",
"Finite element order (polynomial degree).");
args.AddOption(&prob, "-p", "--problem-type",
"Choose between 0: grad, 1: curl, 2: div");
args.AddOption(&static_cond, "-sc", "--static-condensation", "-no-sc",
"--no-static-condensation", "Enable static condensation.");
args.AddOption(&pa, "-pa", "--partial-assembly", "-no-pa",
"--no-partial-assembly", "Enable Partial Assembly.");
args.AddOption(&device_config, "-d", "--device",
"Device configuration string, see Device::Configure().");
args.AddOption(&visualization, "-vis", "--visualization", "-no-vis",
"--no-visualization",
"Enable or disable GLVis visualization.");
args.Parse();
if (!args.Good())
{
if (myid == 0)
{
args.PrintUsage(cout);
}
return 1;
}
if (myid == 0)
{
args.PrintOptions(cout);
}
kappa = freq * M_PI;
// 3. Enable hardware devices such as GPUs, and programming models such as
// CUDA, OCCA, RAJA and OpenMP based on command line options.
Device device(device_config);
if (myid == 0) { device.Print(); }
// 4. Read the (serial) mesh from the given mesh file on all processors. We
// can handle triangular, quadrilateral, tetrahedral, hexahedral, surface
// and volume meshes with the same code.
Mesh *mesh = new Mesh(mesh_file, 1, 1);
dim = mesh->Dimension();
int sdim = mesh->SpaceDimension();
// 5. Refine the serial mesh on all processors to increase the resolution. In
// this example we do 'ref_levels' of uniform refinement. We choose
// 'ref_levels' to be the largest number that gives a final mesh with no
// more than 1,000 elements.
{
int ref_levels = (int)floor(log(1000./mesh->GetNE())/log(2.)/dim);
for (int l = 0; l < ref_levels; l++)
{
mesh->UniformRefinement();
}
}
// 6. Define a parallel mesh by a partitioning of the serial mesh. Refine
// this mesh further in parallel to increase the resolution. Once the
// parallel mesh is defined, the serial mesh can be deleted. Tetrahedral
// meshes need to be reoriented before we can define high-order Nedelec
// spaces on them.
ParMesh *pmesh = new ParMesh(MPI_COMM_WORLD, *mesh);
delete mesh;
{
int par_ref_levels = 1;
for (int l = 0; l < par_ref_levels; l++)
{
pmesh->UniformRefinement();
}
}
// 7. Define a parallel finite element space on the parallel mesh. Here we
// use Nedelec or Raviart-Thomas finite elements of the specified order.
FiniteElementCollection *trial_fec = NULL;
FiniteElementCollection *test_fec = NULL;
if (prob == 0)
{
trial_fec = new H1_FECollection(order, dim);
test_fec = new ND_FECollection(order, dim);
}
else if (prob == 1)
{
trial_fec = new ND_FECollection(order, dim);
test_fec = new RT_FECollection(order-1, dim);
}
else
{
trial_fec = new RT_FECollection(order-1, dim);
test_fec = new L2_FECollection(order-1, dim);
}
ParFiniteElementSpace trial_fes(pmesh, trial_fec);
ParFiniteElementSpace test_fes(pmesh, test_fec);
HYPRE_BigInt trial_size = trial_fes.GlobalTrueVSize();
HYPRE_BigInt test_size = test_fes.GlobalTrueVSize();
if (myid == 0)
{
if (prob == 0)
{
cout << "Number of Nedelec finite element unknowns: " << test_size << endl;
cout << "Number of H1 finite element unknowns: " << trial_size << endl;
}
else if (prob == 1)
{
cout << "Number of Nedelec finite element unknowns: " << trial_size << endl;
cout << "Number of Raviart-Thomas finite element unknowns: " << test_size <<
endl;
}
else
{
cout << "Number of Raviart-Thomas finite element unknowns: "
<< trial_size << endl;
cout << "Number of L2 finite element unknowns: " << test_size << endl;
}
}
// 8. Define the solution vector as a parallel finite element grid function
// corresponding to the trial fespace.
ParGridFunction gftest(&test_fes);
ParGridFunction gftrial(&trial_fes);
ParGridFunction x(&test_fes);
FunctionCoefficient p_coef(p_exact);
VectorFunctionCoefficient gradp_coef(sdim, gradp_exact);
VectorFunctionCoefficient v_coef(sdim, v_exact);
VectorFunctionCoefficient curlv_coef(sdim, curlv_exact);
FunctionCoefficient divgradp_coef(div_gradp_exact);
if (prob == 0)
{
gftrial.ProjectCoefficient(p_coef);
}
else if (prob == 1)
{
gftrial.ProjectCoefficient(v_coef);
}
else
{
gftrial.ProjectCoefficient(gradp_coef);
}
gftrial.SetTrueVector();
gftrial.SetFromTrueVector();
// 9. Set up the parallel bilinear forms for L2 projection.
ConstantCoefficient one(1.0);
ParBilinearForm a(&test_fes);
ParMixedBilinearForm a_mixed(&trial_fes, &test_fes);
if (pa)
{
a.SetAssemblyLevel(AssemblyLevel::PARTIAL);
a_mixed.SetAssemblyLevel(AssemblyLevel::PARTIAL);
}
if (prob == 0)
{
a.AddDomainIntegrator(new VectorFEMassIntegrator(one));
a_mixed.AddDomainIntegrator(new MixedVectorGradientIntegrator(one));
}
else if (prob == 1)
{
a.AddDomainIntegrator(new VectorFEMassIntegrator(one));
a_mixed.AddDomainIntegrator(new MixedVectorCurlIntegrator(one));
}
else
{
a.AddDomainIntegrator(new MassIntegrator(one));
a_mixed.AddDomainIntegrator(new VectorFEDivergenceIntegrator(one));
}
// 10. Assemble the parallel bilinear form and the corresponding linear
// system, applying any necessary transformations such as: parallel
// assembly, eliminating boundary conditions, applying conforming
// constraints for non-conforming AMR, static condensation, etc.
if (static_cond) { a.EnableStaticCondensation(); }
a.Assemble();
if (!pa) { a.Finalize(); }
a_mixed.Assemble();
if (!pa) { a_mixed.Finalize(); }
Vector B(test_fes.GetTrueVSize());
Vector X(test_fes.GetTrueVSize());
if (pa)
{
ParLinearForm b(&test_fes); // used as a vector
a_mixed.Mult(gftrial, b); // process-local multiplication
b.ParallelAssemble(B);
}
else
{
HypreParMatrix *mixed = a_mixed.ParallelAssemble();
Vector P(trial_fes.GetTrueVSize());
gftrial.GetTrueDofs(P);
mixed->Mult(P,B);
delete mixed;
}
// 11. Define and apply a parallel PCG solver for AX=B with Jacobi
// preconditioner.
if (pa)
{
Array<int> ess_tdof_list; // empty
OperatorPtr A;
a.FormSystemMatrix(ess_tdof_list, A);
OperatorJacobiSmoother Jacobi(a, ess_tdof_list);
CGSolver cg(MPI_COMM_WORLD);
cg.SetRelTol(1e-12);
cg.SetMaxIter(1000);
cg.SetPrintLevel(1);
cg.SetOperator(*A);
cg.SetPreconditioner(Jacobi);
X = 0.0;
cg.Mult(B, X);
}
else
{
HypreParMatrix *Amat = a.ParallelAssemble();
HypreDiagScale Jacobi(*Amat);
HyprePCG pcg(*Amat);
pcg.SetTol(1e-12);
pcg.SetMaxIter(1000);
pcg.SetPrintLevel(2);
pcg.SetPreconditioner(Jacobi);
X = 0.0;
pcg.Mult(B, X);
delete Amat;
}
x.SetFromTrueDofs(X);
// 12. Compute the same field by applying a DiscreteInterpolator.
ParGridFunction discreteInterpolant(&test_fes);
ParDiscreteLinearOperator dlo(&trial_fes, &test_fes);
if (prob == 0)
{
dlo.AddDomainInterpolator(new GradientInterpolator());
}
else if (prob == 1)
{
dlo.AddDomainInterpolator(new CurlInterpolator());
}
else
{
dlo.AddDomainInterpolator(new DivergenceInterpolator());
}
dlo.Assemble();
dlo.Mult(gftrial, discreteInterpolant);
// 13. Compute the projection of the exact field.
ParGridFunction exact_proj(&test_fes);
if (prob == 0)
{
exact_proj.ProjectCoefficient(gradp_coef);
}
else if (prob == 1)
{
exact_proj.ProjectCoefficient(curlv_coef);
}
else
{
exact_proj.ProjectCoefficient(divgradp_coef);
}
exact_proj.SetTrueVector();
exact_proj.SetFromTrueVector();
// 14. Compute and print the L_2 norm of the error.
if (prob == 0)
{
real_t errSol = x.ComputeL2Error(gradp_coef);
real_t errInterp = discreteInterpolant.ComputeL2Error(gradp_coef);
real_t errProj = exact_proj.ComputeL2Error(gradp_coef);
if (myid == 0)
{
cout << "\n Solution of (E_h,v) = (grad p_h,v) for E_h and v in H(curl)"
": || E_h - grad p ||_{L_2} = " << errSol << '\n' << endl;
cout << " Gradient interpolant E_h = grad p_h in H(curl): || E_h - grad"
" p ||_{L_2} = " << errInterp << '\n' << endl;
cout << " Projection E_h of exact grad p in H(curl): || E_h - grad p "
"||_{L_2} = " << errProj << '\n' << endl;
}
}
else if (prob == 1)
{
real_t errSol = x.ComputeL2Error(curlv_coef);
real_t errInterp = discreteInterpolant.ComputeL2Error(curlv_coef);
real_t errProj = exact_proj.ComputeL2Error(curlv_coef);
if (myid == 0)
{
cout << "\n Solution of (E_h,w) = (curl v_h,w) for E_h and w in "
"H(div): || E_h - curl v ||_{L_2} = " << errSol << '\n' << endl;
cout << " Curl interpolant E_h = curl v_h in H(div): || E_h - curl v "
"||_{L_2} = " << errInterp << '\n' << endl;
cout << " Projection E_h of exact curl v in H(div): || E_h - curl v "
"||_{L_2} = " << errProj << '\n' << endl;
}
}
else
{
int order_quad = max(2, 2*order+1);
const IntegrationRule *irs[Geometry::NumGeom];
for (int i=0; i < Geometry::NumGeom; ++i)
{
irs[i] = &(IntRules.Get(i, order_quad));
}
real_t errSol = x.ComputeL2Error(divgradp_coef, irs);
real_t errInterp = discreteInterpolant.ComputeL2Error(divgradp_coef, irs);
real_t errProj = exact_proj.ComputeL2Error(divgradp_coef, irs);
if (myid == 0)
{
cout << "\n Solution of (f_h,q) = (div v_h,q) for f_h and q in L_2: "
"|| f_h - div v ||_{L_2} = " << errSol << '\n' << endl;
cout << " Divergence interpolant f_h = div v_h in L_2: || f_h - div v"
" ||_{L_2} = " << errInterp << '\n' << endl;
cout << " Projection f_h of exact div v in L_2: || f_h - div v "
"||_{L_2} = " << errProj << '\n' << endl;
}
}
// 15. Save the refined mesh and the solution in parallel. This output can
// be viewed later using GLVis: "glvis -np <np> -m mesh -g sol".
{
ostringstream mesh_name, sol_name;
mesh_name << "mesh." << setfill('0') << setw(6) << myid;
sol_name << "sol." << setfill('0') << setw(6) << myid;
ofstream mesh_ofs(mesh_name.str().c_str());
mesh_ofs.precision(8);
pmesh->Print(mesh_ofs);
ofstream sol_ofs(sol_name.str().c_str());
sol_ofs.precision(8);
x.Save(sol_ofs);
}
// 16. Send the solution by socket to a GLVis server.
if (visualization)
{
char vishost[] = "localhost";
int visport = 19916;
socketstream sol_sock(vishost, visport);
sol_sock << "parallel " << num_procs << " " << myid << "\n";
sol_sock.precision(8);
sol_sock << "solution\n" << *pmesh << x << flush;
}
// 17. Free the used memory.
delete trial_fec;
delete test_fec;
delete pmesh;
return 0;
}
real_t p_exact(const Vector &x)
{
if (dim == 3)
{
return sin(x(0)) * sin(x(1)) * sin(x(2));
}
else if (dim == 2)
{
return sin(x(0)) * sin(x(1));
}
return 0.0;
}
void gradp_exact(const Vector &x, Vector &f)
{
if (dim == 3)
{
f(0) = cos(x(0)) * sin(x(1)) * sin(x(2));
f(1) = sin(x(0)) * cos(x(1)) * sin(x(2));
f(2) = sin(x(0)) * sin(x(1)) * cos(x(2));
}
else
{
f(0) = cos(x(0)) * sin(x(1));
f(1) = sin(x(0)) * cos(x(1));
if (x.Size() == 3) { f(2) = 0.0; }
}
}
real_t div_gradp_exact(const Vector &x)
{
if (dim == 3)
{
return -3.0 * sin(x(0)) * sin(x(1)) * sin(x(2));
}
else if (dim == 2)
{
return -2.0 * sin(x(0)) * sin(x(1));
}
return 0.0;
}
void v_exact(const Vector &x, Vector &v)
{
if (dim == 3)
{
v(0) = sin(kappa * x(1));
v(1) = sin(kappa * x(2));
v(2) = sin(kappa * x(0));
}
else
{
v(0) = sin(kappa * x(1));
v(1) = sin(kappa * x(0));
if (x.Size() == 3) { v(2) = 0.0; }
}
}
void curlv_exact(const Vector &x, Vector &cv)
{
if (dim == 3)
{
cv(0) = -kappa * cos(kappa * x(2));
cv(1) = -kappa * cos(kappa * x(0));
cv(2) = -kappa * cos(kappa * x(1));
}
else
{
cv = 0.0;
}
}
|