1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
|
// MFEM Example 25
//
// Compile with: make ex25
//
// Sample runs: ex25 -o 2 -f 1.0 -ref 2 -prob 0
// ex25 -o 3 -f 10.0 -ref 2 -prob 1
// ex25 -o 2 -f 5.0 -ref 4 -prob 2
// ex25 -o 2 -f 1.0 -ref 2 -prob 3
// ex25 -o 2 -f 1.0 -ref 2 -prob 0 -m ../data/beam-quad.mesh
// ex25 -o 2 -f 8.0 -ref 3 -prob 4 -m ../data/inline-quad.mesh
// ex25 -o 2 -f 2.0 -ref 1 -prob 4 -m ../data/inline-hex.mesh
//
// Device sample runs:
// ex25 -o 2 -f 8.0 -ref 3 -prob 4 -m ../data/inline-quad.mesh -pa -d cuda
// ex25 -o 2 -f 2.0 -ref 1 -prob 4 -m ../data/inline-hex.mesh -pa -d cuda
//
// Description: This example code solves a simple electromagnetic wave
// propagation problem corresponding to the second order
// indefinite Maxwell equation
//
// (1/mu) * curl curl E - \omega^2 * epsilon E = f
//
// with a Perfectly Matched Layer (PML).
//
// The example demonstrates discretization with Nedelec finite
// elements in 2D or 3D, as well as the use of complex-valued
// bilinear and linear forms. Several test problems are included,
// with prob = 0-3 having known exact solutions, see "On perfectly
// matched layers for discontinuous Petrov-Galerkin methods" by
// Vaziri Astaneh, Keith, Demkowicz, Comput Mech 63, 2019.
//
// We recommend viewing Example 22 before viewing this example.
#include "mfem.hpp"
#include <memory>
#include <fstream>
#include <iostream>
#ifdef _WIN32
#define jn(n, x) _jn(n, x)
#define yn(n, x) _yn(n, x)
#endif
using namespace std;
using namespace mfem;
// Class for setting up a simple Cartesian PML region
class PML
{
private:
Mesh *mesh;
int dim;
// Length of the PML Region in each direction
Array2D<real_t> length;
// Computational Domain Boundary
Array2D<real_t> comp_dom_bdr;
// Domain Boundary
Array2D<real_t> dom_bdr;
// Integer Array identifying elements in the PML
// 0: in the PML, 1: not in the PML
Array<int> elems;
// Compute Domain and Computational Domain Boundaries
void SetBoundaries();
public:
// Constructor
PML(Mesh *mesh_,Array2D<real_t> length_);
// Return Computational Domain Boundary
Array2D<real_t> GetCompDomainBdr() {return comp_dom_bdr;}
// Return Domain Boundary
Array2D<real_t> GetDomainBdr() {return dom_bdr;}
// Return Markers list for elements
Array<int> * GetMarkedPMLElements() {return &elems;}
// Mark elements in the PML region
void SetAttributes(Mesh *mesh_);
// PML complex stretching function
void StretchFunction(const Vector &x, vector<complex<real_t>> &dxs);
};
// Class for returning the PML coefficients of the bilinear form
class PMLDiagMatrixCoefficient : public VectorCoefficient
{
private:
PML * pml = nullptr;
void (*Function)(const Vector &, PML *, Vector &);
public:
PMLDiagMatrixCoefficient(int dim, void(*F)(const Vector &, PML *,
Vector &),
PML * pml_)
: VectorCoefficient(dim), pml(pml_), Function(F)
{}
using VectorCoefficient::Eval;
virtual void Eval(Vector &K, ElementTransformation &T,
const IntegrationPoint &ip)
{
real_t x[3];
Vector transip(x, 3);
T.Transform(ip, transip);
K.SetSize(vdim);
(*Function)(transip, pml, K);
}
};
void maxwell_solution(const Vector &x, vector<complex<real_t>> &Eval);
void E_bdr_data_Re(const Vector &x, Vector &E);
void E_bdr_data_Im(const Vector &x, Vector &E);
void E_exact_Re(const Vector &x, Vector &E);
void E_exact_Im(const Vector &x, Vector &E);
void source(const Vector &x, Vector & f);
// Functions for computing the necessary coefficients after PML stretching.
// J is the Jacobian matrix of the stretching function
void detJ_JT_J_inv_Re(const Vector &x, PML * pml, Vector &D);
void detJ_JT_J_inv_Im(const Vector &x, PML * pml, Vector &D);
void detJ_JT_J_inv_abs(const Vector &x, PML * pml, Vector &D);
void detJ_inv_JT_J_Re(const Vector &x, PML * pml, Vector &D);
void detJ_inv_JT_J_Im(const Vector &x, PML * pml, Vector &D);
void detJ_inv_JT_J_abs(const Vector &x, PML * pml, Vector &D);
Array2D<real_t> comp_domain_bdr;
Array2D<real_t> domain_bdr;
real_t mu = 1.0;
real_t epsilon = 1.0;
real_t omega;
int dim;
bool exact_known = false;
template <typename T> T pow2(const T &x) { return x*x; }
enum prob_type
{
beam, // Wave propagating in a beam-like domain
disc, // Point source propagating in the square-disc domain
lshape, // Point source propagating in the L-shape domain
fichera, // Point source propagating in the fichera domain
load_src // Approximated point source with PML all around
};
prob_type prob;
int main(int argc, char *argv[])
{
// 1. Parse command-line options.
const char *mesh_file = nullptr;
int order = 1;
int ref_levels = 3;
int iprob = 4;
real_t freq = 5.0;
bool herm_conv = true;
bool umf_solver = false;
bool visualization = 1;
bool pa = false;
const char *device_config = "cpu";
OptionsParser args(argc, argv);
args.AddOption(&mesh_file, "-m", "--mesh",
"Mesh file to use.");
args.AddOption(&order, "-o", "--order",
"Finite element order (polynomial degree).");
args.AddOption(&iprob, "-prob", "--problem", "Problem case"
" 0: beam, 1: disc, 2: lshape, 3: fichera, 4: General");
args.AddOption(&ref_levels, "-ref", "--refinements",
"Number of refinements");
args.AddOption(&mu, "-mu", "--permeability",
"Permeability of free space (or 1/(spring constant)).");
args.AddOption(&epsilon, "-eps", "--permittivity",
"Permittivity of free space (or mass constant).");
args.AddOption(&freq, "-f", "--frequency",
"Frequency (in Hz).");
args.AddOption(&herm_conv, "-herm", "--hermitian", "-no-herm",
"--no-hermitian", "Use convention for Hermitian operators.");
#ifdef MFEM_USE_SUITESPARSE
args.AddOption(&umf_solver, "-umf", "--umfpack", "-no-umf",
"--no-umfpack", "Use the UMFPack Solver.");
#endif
args.AddOption(&visualization, "-vis", "--visualization", "-no-vis",
"--no-visualization",
"Enable or disable GLVis visualization.");
args.AddOption(&pa, "-pa", "--partial-assembly", "-no-pa",
"--no-partial-assembly", "Enable Partial Assembly.");
args.AddOption(&device_config, "-d", "--device",
"Device configuration string, see Device::Configure().");
args.Parse();
if (iprob > 4) { iprob = 4; }
prob = (prob_type)iprob;
// 2. Enable hardware devices such as GPUs, and programming models such as
// CUDA, OCCA, RAJA and OpenMP based on command line options.
Device device(device_config);
device.Print();
// 3. Setup the mesh
if (!mesh_file)
{
exact_known = true;
switch (prob)
{
case beam:
mesh_file = "../data/beam-hex.mesh";
break;
case disc:
mesh_file = "../data/square-disc.mesh";
break;
case lshape:
mesh_file = "../data/l-shape.mesh";
break;
case fichera:
mesh_file = "../data/fichera.mesh";
break;
default:
exact_known = false;
mesh_file = "../data/inline-quad.mesh";
break;
}
}
if (!args.Good())
{
args.PrintUsage(cout);
return 1;
}
args.PrintOptions(cout);
Mesh * mesh = new Mesh(mesh_file, 1, 1);
dim = mesh->Dimension();
// Angular frequency
omega = real_t(2.0 * M_PI) * freq;
// Setup PML length
Array2D<real_t> length(dim, 2); length = 0.0;
// 4. Setup the Cartesian PML region.
switch (prob)
{
case disc:
length = 0.2;
break;
case lshape:
length(0, 0) = 0.1;
length(1, 0) = 0.1;
break;
case fichera:
length(0, 1) = 0.5;
length(1, 1) = 0.5;
length(2, 1) = 0.5;
break;
case beam:
length(0, 1) = 2.0;
break;
default:
length = 0.25;
break;
}
PML * pml = new PML(mesh,length);
comp_domain_bdr = pml->GetCompDomainBdr();
domain_bdr = pml->GetDomainBdr();
// 5. Refine the mesh to increase the resolution.
for (int l = 0; l < ref_levels; l++)
{
mesh->UniformRefinement();
}
// 6. Set element attributes in order to distinguish elements in the
// PML region
pml->SetAttributes(mesh);
// 7. Define a finite element space on the mesh. Here we use the Nedelec
// finite elements of the specified order.
FiniteElementCollection *fec = new ND_FECollection(order, dim);
FiniteElementSpace *fespace = new FiniteElementSpace(mesh, fec);
int size = fespace->GetTrueVSize();
cout << "Number of finite element unknowns: " << size << endl;
// 8. Determine the list of true essential boundary dofs. In this example,
// the boundary conditions are defined based on the specific mesh and the
// problem type.
Array<int> ess_tdof_list;
Array<int> ess_bdr;
if (mesh->bdr_attributes.Size())
{
ess_bdr.SetSize(mesh->bdr_attributes.Max());
ess_bdr = 1;
if (prob == lshape || prob == fichera)
{
ess_bdr = 0;
for (int j = 0; j < mesh->GetNBE(); j++)
{
Vector center(dim);
int bdrgeom = mesh->GetBdrElementGeometry(j);
ElementTransformation * tr = mesh->GetBdrElementTransformation(j);
tr->Transform(Geometries.GetCenter(bdrgeom),center);
int k = mesh->GetBdrAttribute(j);
switch (prob)
{
case lshape:
if (center[0] == 1_r || center[0] == 0.5_r ||
center[1] == 0.5_r)
{
ess_bdr[k - 1] = 1;
}
break;
case fichera:
if (center[0] == -1_r || center[0] == 0_r ||
center[1] == 0_r || center[2] == 0_r)
{
ess_bdr[k - 1] = 1;
}
break;
default:
break;
}
}
}
}
fespace->GetEssentialTrueDofs(ess_bdr, ess_tdof_list);
// 9. Setup Complex Operator convention
ComplexOperator::Convention conv =
herm_conv ? ComplexOperator::HERMITIAN : ComplexOperator::BLOCK_SYMMETRIC;
// 10. Set up the linear form b(.) which corresponds to the right-hand side of
// the FEM linear system.
VectorFunctionCoefficient f(dim, source);
ComplexLinearForm b(fespace, conv);
if (prob == load_src)
{
b.AddDomainIntegrator(NULL, new VectorFEDomainLFIntegrator(f));
}
b.Vector::operator=(0.0);
b.Assemble();
// 11. Define the solution vector x as a complex finite element grid function
// corresponding to fespace.
ComplexGridFunction x(fespace);
x = 0.0;
VectorFunctionCoefficient E_Re(dim, E_bdr_data_Re);
VectorFunctionCoefficient E_Im(dim, E_bdr_data_Im);
x.ProjectBdrCoefficientTangent(E_Re, E_Im, ess_bdr);
// 12. Set up the sesquilinear form a(.,.)
//
// In Comp
// Domain: 1/mu (Curl E, Curl F) - omega^2 * epsilon (E,F)
//
// In PML: 1/mu (1/det(J) J^T J Curl E, Curl F)
// - omega^2 * epsilon (det(J) * (J^T J)^-1 * E, F)
//
// where J denotes the Jacobian Matrix of the PML Stretching function
Array<int> attr;
Array<int> attrPML;
if (mesh->attributes.Size())
{
attr.SetSize(mesh->attributes.Max());
attrPML.SetSize(mesh->attributes.Max());
attr = 0; attr[0] = 1;
attrPML = 0;
if (mesh->attributes.Max() > 1)
{
attrPML[1] = 1;
}
}
ConstantCoefficient muinv(1_r / mu);
ConstantCoefficient omeg(-pow2(omega) * epsilon);
RestrictedCoefficient restr_muinv(muinv,attr);
RestrictedCoefficient restr_omeg(omeg,attr);
// Integrators inside the computational domain (excluding the PML region)
SesquilinearForm a(fespace, conv);
a.AddDomainIntegrator(new CurlCurlIntegrator(restr_muinv),NULL);
a.AddDomainIntegrator(new VectorFEMassIntegrator(restr_omeg),NULL);
int cdim = (dim == 2) ? 1 : dim;
PMLDiagMatrixCoefficient pml_c1_Re(cdim,detJ_inv_JT_J_Re, pml);
PMLDiagMatrixCoefficient pml_c1_Im(cdim,detJ_inv_JT_J_Im, pml);
ScalarVectorProductCoefficient c1_Re(muinv,pml_c1_Re);
ScalarVectorProductCoefficient c1_Im(muinv,pml_c1_Im);
VectorRestrictedCoefficient restr_c1_Re(c1_Re,attrPML);
VectorRestrictedCoefficient restr_c1_Im(c1_Im,attrPML);
PMLDiagMatrixCoefficient pml_c2_Re(dim, detJ_JT_J_inv_Re,pml);
PMLDiagMatrixCoefficient pml_c2_Im(dim, detJ_JT_J_inv_Im,pml);
ScalarVectorProductCoefficient c2_Re(omeg,pml_c2_Re);
ScalarVectorProductCoefficient c2_Im(omeg,pml_c2_Im);
VectorRestrictedCoefficient restr_c2_Re(c2_Re,attrPML);
VectorRestrictedCoefficient restr_c2_Im(c2_Im,attrPML);
// Integrators inside the PML region
a.AddDomainIntegrator(new CurlCurlIntegrator(restr_c1_Re),
new CurlCurlIntegrator(restr_c1_Im));
a.AddDomainIntegrator(new VectorFEMassIntegrator(restr_c2_Re),
new VectorFEMassIntegrator(restr_c2_Im));
// 13. Assemble the bilinear form and the corresponding linear system,
// applying any necessary transformations such as: assembly, eliminating
// boundary conditions, applying conforming constraints for
// non-conforming AMR, etc.
if (pa) { a.SetAssemblyLevel(AssemblyLevel::PARTIAL); }
a.Assemble(0);
OperatorPtr A;
Vector B, X;
a.FormLinearSystem(ess_tdof_list, x, b, A, X, B);
// 14. Solve using a direct or an iterative solver
#ifdef MFEM_USE_SUITESPARSE
if (!pa && umf_solver)
{
ComplexUMFPackSolver csolver(*A.As<ComplexSparseMatrix>());
csolver.Control[UMFPACK_ORDERING] = UMFPACK_ORDERING_METIS;
csolver.SetPrintLevel(1);
csolver.Mult(B, X);
}
#endif
// 14a. Set up the Bilinear form a(.,.) for the preconditioner
//
// In Comp
// Domain: 1/mu (Curl E, Curl F) + omega^2 * epsilon (E,F)
//
// In PML: 1/mu (abs(1/det(J) J^T J) Curl E, Curl F)
// + omega^2 * epsilon (abs(det(J) * (J^T J)^-1) * E, F)
if (pa || !umf_solver)
{
ConstantCoefficient absomeg(pow2(omega) * epsilon);
RestrictedCoefficient restr_absomeg(absomeg,attr);
BilinearForm prec(fespace);
prec.AddDomainIntegrator(new CurlCurlIntegrator(restr_muinv));
prec.AddDomainIntegrator(new VectorFEMassIntegrator(restr_absomeg));
PMLDiagMatrixCoefficient pml_c1_abs(cdim,detJ_inv_JT_J_abs, pml);
ScalarVectorProductCoefficient c1_abs(muinv,pml_c1_abs);
VectorRestrictedCoefficient restr_c1_abs(c1_abs,attrPML);
PMLDiagMatrixCoefficient pml_c2_abs(dim, detJ_JT_J_inv_abs,pml);
ScalarVectorProductCoefficient c2_abs(absomeg,pml_c2_abs);
VectorRestrictedCoefficient restr_c2_abs(c2_abs,attrPML);
prec.AddDomainIntegrator(new CurlCurlIntegrator(restr_c1_abs));
prec.AddDomainIntegrator(new VectorFEMassIntegrator(restr_c2_abs));
if (pa) { prec.SetAssemblyLevel(AssemblyLevel::PARTIAL); }
prec.Assemble();
// 14b. Define and apply a GMRES solver for AU=B with a block diagonal
// preconditioner based on the Gauss-Seidel or Jacobi sparse smoother.
Array<int> offsets(3);
offsets[0] = 0;
offsets[1] = fespace->GetTrueVSize();
offsets[2] = fespace->GetTrueVSize();
offsets.PartialSum();
std::unique_ptr<Operator> pc_r;
std::unique_ptr<Operator> pc_i;
real_t s = (conv == ComplexOperator::HERMITIAN) ? -1_r : 1_r;
if (pa)
{
// Jacobi Smoother
pc_r.reset(new OperatorJacobiSmoother(prec, ess_tdof_list));
pc_i.reset(new ScaledOperator(pc_r.get(), s));
}
else
{
OperatorPtr PCOpAh;
prec.SetDiagonalPolicy(mfem::Operator::DIAG_ONE);
prec.FormSystemMatrix(ess_tdof_list, PCOpAh);
// Gauss-Seidel Smoother
pc_r.reset(new GSSmoother(*PCOpAh.As<SparseMatrix>()));
pc_i.reset(new ScaledOperator(pc_r.get(), s));
}
BlockDiagonalPreconditioner BlockDP(offsets);
BlockDP.SetDiagonalBlock(0, pc_r.get());
BlockDP.SetDiagonalBlock(1, pc_i.get());
GMRESSolver gmres;
gmres.SetPrintLevel(1);
gmres.SetKDim(200);
gmres.SetMaxIter(pa ? 5000 : 2000);
gmres.SetRelTol(1e-5);
gmres.SetAbsTol(0.0);
gmres.SetOperator(*A);
gmres.SetPreconditioner(BlockDP);
gmres.Mult(B, X);
}
// 15. Recover the solution as a finite element grid function and compute the
// errors if the exact solution is known.
a.RecoverFEMSolution(X, b, x);
// If exact is known compute the error
if (exact_known)
{
VectorFunctionCoefficient E_ex_Re(dim, E_exact_Re);
VectorFunctionCoefficient E_ex_Im(dim, E_exact_Im);
int order_quad = max(2, 2 * order + 1);
const IntegrationRule *irs[Geometry::NumGeom];
for (int i = 0; i < Geometry::NumGeom; ++i)
{
irs[i] = &(IntRules.Get(i, order_quad));
}
real_t L2Error_Re = x.real().ComputeL2Error(E_ex_Re, irs,
pml->GetMarkedPMLElements());
real_t L2Error_Im = x.imag().ComputeL2Error(E_ex_Im, irs,
pml->GetMarkedPMLElements());
ComplexGridFunction x_gf0(fespace);
x_gf0 = 0.0;
real_t norm_E_Re, norm_E_Im;
norm_E_Re = x_gf0.real().ComputeL2Error(E_ex_Re, irs,
pml->GetMarkedPMLElements());
norm_E_Im = x_gf0.imag().ComputeL2Error(E_ex_Im, irs,
pml->GetMarkedPMLElements());
cout << "\n Relative Error (Re part): || E_h - E || / ||E|| = "
<< L2Error_Re / norm_E_Re
<< "\n Relative Error (Im part): || E_h - E || / ||E|| = "
<< L2Error_Im / norm_E_Im
<< "\n Total Error: "
<< sqrt(L2Error_Re*L2Error_Re + L2Error_Im*L2Error_Im) << "\n\n";
}
// 16. Save the refined mesh and the solution. This output can be viewed
// later using GLVis: "glvis -m mesh -g sol".
{
ofstream mesh_ofs("ex25.mesh");
mesh_ofs.precision(8);
mesh->Print(mesh_ofs);
ofstream sol_r_ofs("ex25-sol_r.gf");
ofstream sol_i_ofs("ex25-sol_i.gf");
sol_r_ofs.precision(8);
sol_i_ofs.precision(8);
x.real().Save(sol_r_ofs);
x.imag().Save(sol_i_ofs);
}
// 17. Send the solution by socket to a GLVis server.
if (visualization)
{
// Define visualization keys for GLVis (see GLVis documentation)
string keys;
keys = (dim == 3) ? "keys macF\n" : keys = "keys amrRljcUUuu\n";
if (prob == beam && dim == 3) {keys = "keys macFFiYYYYYYYYYYYYYYYYYY\n";}
if (prob == beam && dim == 2) {keys = "keys amrRljcUUuuu\n"; }
char vishost[] = "localhost";
int visport = 19916;
socketstream sol_sock_re(vishost, visport);
sol_sock_re.precision(8);
sol_sock_re << "solution\n"
<< *mesh << x.real() << keys
<< "window_title 'Solution real part'" << flush;
socketstream sol_sock_im(vishost, visport);
sol_sock_im.precision(8);
sol_sock_im << "solution\n"
<< *mesh << x.imag() << keys
<< "window_title 'Solution imag part'" << flush;
GridFunction x_t(fespace);
x_t = x.real();
socketstream sol_sock(vishost, visport);
sol_sock.precision(8);
sol_sock << "solution\n"
<< *mesh << x_t << keys << "autoscale off\n"
<< "window_title 'Harmonic Solution (t = 0.0 T)'"
<< "pause\n" << flush;
cout << "GLVis visualization paused."
<< " Press space (in the GLVis window) to resume it.\n";
int num_frames = 32;
int i = 0;
while (sol_sock)
{
real_t t = (real_t)(i % num_frames) / num_frames;
ostringstream oss;
oss << "Harmonic Solution (t = " << t << " T)";
add(cos(real_t(2.0 * M_PI) * t), x.real(),
sin(real_t(2.0 * M_PI) * t), x.imag(), x_t);
sol_sock << "solution\n"
<< *mesh << x_t
<< "window_title '" << oss.str() << "'" << flush;
i++;
}
}
// 18. Free the used memory.
delete pml;
delete fespace;
delete fec;
delete mesh;
return 0;
}
void source(const Vector &x, Vector &f)
{
Vector center(dim);
real_t r = 0.0;
for (int i = 0; i < dim; ++i)
{
center(i) = 0.5_r * (comp_domain_bdr(i, 0) + comp_domain_bdr(i, 1));
r += pow2(x[i] - center[i]);
}
real_t n = 5_r * omega * sqrt(epsilon * mu) / real_t(M_PI);
real_t coeff = pow2(n) / real_t(M_PI);
real_t alpha = -pow2(n) * r;
f = 0.0;
f[0] = coeff * exp(alpha);
}
void maxwell_solution(const Vector &x, vector<complex<real_t>> &E)
{
// Initialize
for (int i = 0; i < dim; ++i)
{
E[i] = 0.0;
}
constexpr complex<real_t> zi = complex<real_t>(0., 1.);
real_t k = omega * sqrt(epsilon * mu);
switch (prob)
{
case disc:
case lshape:
case fichera:
{
Vector shift(dim);
shift = 0.0;
if (prob == fichera) { shift = 1.0; }
if (prob == disc) { shift = -0.5; }
if (prob == lshape) { shift = -1.0; }
if (dim == 2)
{
real_t x0 = x(0) + shift(0);
real_t x1 = x(1) + shift(1);
real_t r = sqrt(x0 * x0 + x1 * x1);
real_t beta = k * r;
// Bessel functions
complex<real_t> Ho, Ho_r, Ho_rr;
Ho = real_t(jn(0, beta)) + zi * real_t(yn(0, beta));
Ho_r = -k * (real_t(jn(1, beta)) + zi * real_t(yn(1, beta)));
Ho_rr = -k * k * (1_r / beta *
(real_t(jn(1, beta)) + zi * real_t(yn(1, beta))) -
(real_t(jn(2, beta)) + zi * real_t(yn(2, beta))));
// First derivatives
real_t r_x = x0 / r;
real_t r_y = x1 / r;
real_t r_xy = -(r_x / r) * r_y;
real_t r_xx = (1_r / r) * (1_r - r_x * r_x);
complex<real_t> val, val_xx, val_xy;
val = real_t(0.25) * zi * Ho;
val_xx = real_t(0.25) * zi * (r_xx * Ho_r + r_x * r_x * Ho_rr);
val_xy = real_t(0.25) * zi * (r_xy * Ho_r + r_x * r_y * Ho_rr);
E[0] = zi / k * (k * k * val + val_xx);
E[1] = zi / k * val_xy;
}
else if (dim == 3)
{
real_t x0 = x(0) + shift(0);
real_t x1 = x(1) + shift(1);
real_t x2 = x(2) + shift(2);
real_t r = sqrt(x0 * x0 + x1 * x1 + x2 * x2);
real_t r_x = x0 / r;
real_t r_y = x1 / r;
real_t r_z = x2 / r;
real_t r_xx = (1_r / r) * (1_r - r_x * r_x);
real_t r_yx = -(r_y / r) * r_x;
real_t r_zx = -(r_z / r) * r_x;
complex<real_t> val, val_r, val_rr;
val = exp(zi * k * r) / r;
val_r = val / r * (zi * k * r - 1_r);
val_rr = val / (r * r) * (-k * k * r * r
- real_t(2) * zi * k * r + real_t(2));
complex<real_t> val_xx, val_yx, val_zx;
val_xx = val_rr * r_x * r_x + val_r * r_xx;
val_yx = val_rr * r_x * r_y + val_r * r_yx;
val_zx = val_rr * r_x * r_z + val_r * r_zx;
complex<real_t> alpha = zi * k / real_t(4) / (real_t) M_PI / k / k;
E[0] = alpha * (k * k * val + val_xx);
E[1] = alpha * val_yx;
E[2] = alpha * val_zx;
}
break;
}
case beam:
{
// T_10 mode
if (dim == 3)
{
real_t k10 = sqrt(k * k - real_t(M_PI * M_PI));
E[1] = -zi * k / (real_t) M_PI *
sin((real_t) M_PI*x(2))*exp(zi * k10 * x(0));
}
else if (dim == 2)
{
E[1] = -zi * k / (real_t) M_PI * exp(zi * k * x(0));
}
break;
}
default:
break;
}
}
void E_exact_Re(const Vector &x, Vector &E)
{
vector<complex<real_t>> Eval(E.Size());
maxwell_solution(x, Eval);
for (int i = 0; i < dim; ++i)
{
E[i] = Eval[i].real();
}
}
void E_exact_Im(const Vector &x, Vector &E)
{
vector<complex<real_t>> Eval(E.Size());
maxwell_solution(x, Eval);
for (int i = 0; i < dim; ++i)
{
E[i] = Eval[i].imag();
}
}
void E_bdr_data_Re(const Vector &x, Vector &E)
{
E = 0.0;
bool in_pml = false;
for (int i = 0; i < dim; ++i)
{
// check if in PML
if (x(i) - comp_domain_bdr(i, 0) < 0_r ||
x(i) - comp_domain_bdr(i, 1) > 0_r)
{
in_pml = true;
break;
}
}
if (!in_pml)
{
vector<complex<real_t>> Eval(E.Size());
maxwell_solution(x, Eval);
for (int i = 0; i < dim; ++i)
{
E[i] = Eval[i].real();
}
}
}
// Define bdr_data solution
void E_bdr_data_Im(const Vector &x, Vector &E)
{
E = 0.0;
bool in_pml = false;
for (int i = 0; i < dim; ++i)
{
// check if in PML
if (x(i) - comp_domain_bdr(i, 0) < 0_r ||
x(i) - comp_domain_bdr(i, 1) > 0_r)
{
in_pml = true;
break;
}
}
if (!in_pml)
{
vector<complex<real_t>> Eval(E.Size());
maxwell_solution(x, Eval);
for (int i = 0; i < dim; ++i)
{
E[i] = Eval[i].imag();
}
}
}
void detJ_JT_J_inv_Re(const Vector &x, PML * pml, Vector &D)
{
vector<complex<real_t>> dxs(dim);
complex<real_t> det(1.0, 0.0);
pml->StretchFunction(x, dxs);
for (int i = 0; i < dim; ++i)
{
det *= dxs[i];
}
for (int i = 0; i < dim; ++i)
{
D(i) = (det / pow2(dxs[i])).real();
}
}
void detJ_JT_J_inv_Im(const Vector &x, PML * pml, Vector &D)
{
vector<complex<real_t>> dxs(dim);
complex<real_t> det = 1.0;
pml->StretchFunction(x, dxs);
for (int i = 0; i < dim; ++i)
{
det *= dxs[i];
}
for (int i = 0; i < dim; ++i)
{
D(i) = (det / pow2(dxs[i])).imag();
}
}
void detJ_JT_J_inv_abs(const Vector &x, PML * pml, Vector &D)
{
vector<complex<real_t>> dxs(dim);
complex<real_t> det = 1.0;
pml->StretchFunction(x, dxs);
for (int i = 0; i < dim; ++i)
{
det *= dxs[i];
}
for (int i = 0; i < dim; ++i)
{
D(i) = abs(det / pow2(dxs[i]));
}
}
void detJ_inv_JT_J_Re(const Vector &x, PML * pml, Vector &D)
{
vector<complex<real_t>> dxs(dim);
complex<real_t> det(1.0, 0.0);
pml->StretchFunction(x, dxs);
for (int i = 0; i < dim; ++i)
{
det *= dxs[i];
}
// in the 2D case the coefficient is scalar 1/det(J)
if (dim == 2)
{
D = (1_r / det).real();
}
else
{
for (int i = 0; i < dim; ++i)
{
D(i) = (pow2(dxs[i]) / det).real();
}
}
}
void detJ_inv_JT_J_Im(const Vector &x, PML * pml, Vector &D)
{
vector<complex<real_t>> dxs(dim);
complex<real_t> det = 1.0;
pml->StretchFunction(x, dxs);
for (int i = 0; i < dim; ++i)
{
det *= dxs[i];
}
if (dim == 2)
{
D = (1_r / det).imag();
}
else
{
for (int i = 0; i < dim; ++i)
{
D(i) = (pow2(dxs[i]) / det).imag();
}
}
}
void detJ_inv_JT_J_abs(const Vector &x, PML * pml, Vector &D)
{
vector<complex<real_t>> dxs(dim);
complex<real_t> det = 1.0;
pml->StretchFunction(x, dxs);
for (int i = 0; i < dim; ++i)
{
det *= dxs[i];
}
if (dim == 2)
{
D = abs(1_r / det);
}
else
{
for (int i = 0; i < dim; ++i)
{
D(i) = abs(pow2(dxs[i]) / det);
}
}
}
PML::PML(Mesh *mesh_, Array2D<real_t> length_)
: mesh(mesh_), length(length_)
{
dim = mesh->Dimension();
SetBoundaries();
}
void PML::SetBoundaries()
{
comp_dom_bdr.SetSize(dim, 2);
dom_bdr.SetSize(dim, 2);
Vector pmin, pmax;
mesh->GetBoundingBox(pmin, pmax);
for (int i = 0; i < dim; i++)
{
dom_bdr(i, 0) = pmin(i);
dom_bdr(i, 1) = pmax(i);
comp_dom_bdr(i, 0) = dom_bdr(i, 0) + length(i, 0);
comp_dom_bdr(i, 1) = dom_bdr(i, 1) - length(i, 1);
}
}
void PML::SetAttributes(Mesh *mesh_)
{
// Initialize bdr attributes
for (int i = 0; i < mesh_->GetNBE(); ++i)
{
mesh_->GetBdrElement(i)->SetAttribute(i+1);
}
int nrelem = mesh_->GetNE();
elems.SetSize(nrelem);
// Loop through the elements and identify which of them are in the PML
for (int i = 0; i < nrelem; ++i)
{
elems[i] = 1;
bool in_pml = false;
Element *el = mesh_->GetElement(i);
Array<int> vertices;
// Initialize attribute
el->SetAttribute(1);
el->GetVertices(vertices);
int nrvert = vertices.Size();
// Check if any vertex is in the PML
for (int iv = 0; iv < nrvert; ++iv)
{
int vert_idx = vertices[iv];
real_t *coords = mesh_->GetVertex(vert_idx);
for (int comp = 0; comp < dim; ++comp)
{
if (coords[comp] > comp_dom_bdr(comp, 1) ||
coords[comp] < comp_dom_bdr(comp, 0))
{
in_pml = true;
break;
}
}
}
if (in_pml)
{
elems[i] = 0;
el->SetAttribute(2);
}
}
mesh_->SetAttributes();
}
void PML::StretchFunction(const Vector &x,
vector<complex<real_t>> &dxs)
{
constexpr complex<real_t> zi = complex<real_t>(0., 1.);
real_t n = 2.0;
real_t c = 5.0;
real_t coeff;
real_t k = omega * sqrt(epsilon * mu);
// Stretch in each direction independently
for (int i = 0; i < dim; ++i)
{
dxs[i] = 1.0;
if (x(i) >= comp_domain_bdr(i, 1))
{
coeff = n * c / k / pow(length(i, 1), n);
dxs[i] = 1_r + zi * coeff *
abs(pow(x(i) - comp_domain_bdr(i, 1), n - 1_r));
}
if (x(i) <= comp_domain_bdr(i, 0))
{
coeff = n * c / k / pow(length(i, 0), n);
dxs[i] = 1_r + zi * coeff *
abs(pow(x(i) - comp_domain_bdr(i, 0), n - 1_r));
}
}
}
|