1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
|
// MFEM Example 29 - Parallel Version
//
// Compile with: make ex29p
//
// Sample runs: mpirun -np 4 ex29p
// mpirun -np 4 ex29p -sc
// mpirun -np 4 ex29p -mt 3 -o 3 -sc
// mpirun -np 4 ex29p -mt 3 -rs 1 -o 4 -sc
//
// Description: This example code demonstrates the use of MFEM to define a
// finite element discretization of a PDE on a 2 dimensional
// surface embedded in a 3 dimensional domain. In this case we
// solve the Laplace problem -Div(sigma Grad u) = 1, with
// homogeneous Dirichlet boundary conditions, where sigma is an
// anisotropic diffusion constant defined as a 3x3 matrix
// coefficient.
//
// This example demonstrates the use of finite element integrators
// on 2D domains with 3D coefficients.
//
// We recommend viewing examples 1 and 7 before viewing this
// example.
#include "mfem.hpp"
#include <fstream>
#include <iostream>
using namespace std;
using namespace mfem;
Mesh * GetMesh(int type);
void trans(const Vector &x, Vector &r);
void sigmaFunc(const Vector &x, DenseMatrix &s);
real_t uExact(const Vector &x)
{
return (0.25 * (2.0 + x[0]) - x[2]) * (x[2] + 0.25 * (2.0 + x[0]));
}
void duExact(const Vector &x, Vector &du)
{
du.SetSize(3);
du[0] = 0.125 * (2.0 + x[0]) * x[1] * x[1];
du[1] = -0.125 * (2.0 + x[0]) * x[0] * x[1];
du[2] = -2.0 * x[2];
}
void fluxExact(const Vector &x, Vector &f)
{
f.SetSize(3);
DenseMatrix s(3);
sigmaFunc(x, s);
Vector du(3);
duExact(x, du);
s.Mult(du, f);
f *= -1.0;
}
int main(int argc, char *argv[])
{
// 1. Initialize MPI and HYPRE.
Mpi::Init(argc, argv);
int num_procs = Mpi::WorldSize();
int myid = Mpi::WorldRank();
Hypre::Init();
// 2. Parse command-line options.
int order = 3;
int mesh_type = 4; // Default to Quadrilateral mesh
int mesh_order = 3;
int ser_ref_levels = 2;
int par_ref_levels = 1;
bool static_cond = false;
bool visualization = true;
OptionsParser args(argc, argv);
args.AddOption(&mesh_type, "-mt", "--mesh-type",
"Mesh type: 3 - Triangular, 4 - Quadrilateral.");
args.AddOption(&mesh_order, "-mo", "--mesh-order",
"Geometric order of the curved mesh.");
args.AddOption(&ser_ref_levels, "-rs", "--refine-serial",
"Number of times to refine the mesh uniformly in serial.");
args.AddOption(&par_ref_levels, "-rp", "--refine-parallel",
"Number of times to refine the mesh uniformly in parallel.");
args.AddOption(&order, "-o", "--order",
"Finite element order (polynomial degree) or -1 for"
" isoparametric space.");
args.AddOption(&static_cond, "-sc", "--static-condensation", "-no-sc",
"--no-static-condensation", "Enable static condensation.");
args.AddOption(&visualization, "-vis", "--visualization", "-no-vis",
"--no-visualization",
"Enable or disable GLVis visualization.");
args.ParseCheck();
// 3. Construct a quadrilateral or triangular mesh with the topology of a
// cylindrical surface.
Mesh *mesh = GetMesh(mesh_type);
int dim = mesh->Dimension();
// 4. Refine the mesh to increase the resolution. In this example we do
// 'ser_ref_levels' of uniform refinement.
for (int l = 0; l < ser_ref_levels; l++)
{
mesh->UniformRefinement();
}
// 5. Define a parallel mesh by a partitioning of the serial mesh. Refine
// this mesh further in parallel to increase the resolution. Once the
// parallel mesh is defined, the serial mesh can be deleted.
ParMesh pmesh(MPI_COMM_WORLD, *mesh);
delete mesh;
for (int l = 0; l < par_ref_levels; l++)
{
pmesh.UniformRefinement();
}
// 6. Transform the mesh so that it has a more interesting geometry.
pmesh.SetCurvature(mesh_order);
pmesh.Transform(trans);
// 7. Define a finite element space on the mesh. Here we use continuous
// Lagrange finite elements of the specified order.
H1_FECollection fec(order, dim);
ParFiniteElementSpace fespace(&pmesh, &fec);
HYPRE_Int total_num_dofs = fespace.GlobalTrueVSize();
if (Mpi::Root())
{
cout << "Number of unknowns: " << total_num_dofs << endl;
}
// 8. Determine the list of true (i.e. conforming) essential boundary dofs.
// In this example, the boundary conditions are defined by marking all
// the boundary attributes from the mesh as essential (Dirichlet) and
// converting them to a list of true dofs.
Array<int> ess_tdof_list;
if (pmesh.bdr_attributes.Size())
{
Array<int> ess_bdr(pmesh.bdr_attributes.Max());
ess_bdr = 1;
fespace.GetEssentialTrueDofs(ess_bdr, ess_tdof_list);
}
// 9. Set up the linear form b(.) which corresponds to the right-hand side of
// the FEM linear system, which in this case is (1,phi_i) where phi_i are
// the basis functions in the finite element fespace.
ParLinearForm b(&fespace);
ConstantCoefficient one(1.0);
b.AddDomainIntegrator(new DomainLFIntegrator(one));
b.Assemble();
// 10. Define the solution vector x as a finite element grid function
// corresponding to fespace. Initialize x with initial guess of zero,
// which satisfies the boundary conditions.
ParGridFunction x(&fespace);
x = 0.0;
// 11. Set up the bilinear form a(.,.) on the finite element space
// corresponding to the Laplacian operator -Delta, by adding the
// Diffusion domain integrator.
ParBilinearForm a(&fespace);
MatrixFunctionCoefficient sigma(3, sigmaFunc);
BilinearFormIntegrator *integ = new DiffusionIntegrator(sigma);
a.AddDomainIntegrator(integ);
// 12. Assemble the bilinear form and the corresponding linear system,
// applying any necessary transformations such as: eliminating boundary
// conditions, applying conforming constraints for non-conforming AMR,
// static condensation, etc.
if (static_cond) { a.EnableStaticCondensation(); }
a.Assemble();
OperatorPtr A;
Vector B, X;
a.FormLinearSystem(ess_tdof_list, x, b, A, X, B);
if (myid == 0)
{
cout << "Size of linear system: "
<< A.As<HypreParMatrix>()->GetGlobalNumRows() << endl;
}
// 13. Define and apply a parallel PCG solver for A X = B with the BoomerAMG
// preconditioner from hypre.
HypreBoomerAMG *amg = new HypreBoomerAMG;
CGSolver cg(MPI_COMM_WORLD);
cg.SetRelTol(1e-12);
cg.SetMaxIter(2000);
cg.SetPrintLevel(1);
cg.SetPreconditioner(*amg);
cg.SetOperator(*A);
cg.Mult(B, X);
delete amg;
// 14. Recover the solution as a finite element grid function.
a.RecoverFEMSolution(X, b, x);
// 15. Compute error in the solution and its flux
FunctionCoefficient uCoef(uExact);
real_t error = x.ComputeL2Error(uCoef);
if (myid == 0) { cout << "|u - u_h|_2 = " << error << endl; }
ParFiniteElementSpace flux_fespace(&pmesh, &fec, 3);
ParGridFunction flux(&flux_fespace);
x.ComputeFlux(*integ, flux); flux *= -1.0;
VectorFunctionCoefficient fluxCoef(3, fluxExact);
real_t flux_err = flux.ComputeL2Error(fluxCoef);
if (myid == 0) { cout << "|f - f_h|_2 = " << flux_err << endl; }
// 16. Save the refined mesh and the solution. This output can be viewed
// later using GLVis: "glvis -np <np> -m mesh -g sol".
{
ostringstream mesh_name, sol_name, flux_name;
mesh_name << "mesh." << setfill('0') << setw(6) << myid;
sol_name << "sol." << setfill('0') << setw(6) << myid;
flux_name << "flux." << setfill('0') << setw(6) << myid;
ofstream mesh_ofs(mesh_name.str().c_str());
mesh_ofs.precision(8);
pmesh.Print(mesh_ofs);
ofstream sol_ofs(sol_name.str().c_str());
sol_ofs.precision(8);
x.Save(sol_ofs);
ofstream flux_ofs(flux_name.str().c_str());
flux_ofs.precision(8);
flux.Save(flux_ofs);
}
// 17. Send the solution by socket to a GLVis server.
if (visualization)
{
char vishost[] = "localhost";
int visport = 19916;
socketstream sol_sock(vishost, visport);
sol_sock << "parallel " << num_procs << " " << myid << "\n";
sol_sock.precision(8);
sol_sock << "solution\n" << pmesh << x
<< "window_title 'Solution'\n" << flush;
socketstream flux_sock(vishost, visport);
flux_sock << "parallel " << num_procs << " " << myid << "\n";
flux_sock.precision(8);
flux_sock << "solution\n" << pmesh << flux
<< "keys vvv\n"
<< "window_geometry 402 0 400 350\n"
<< "window_title 'Flux'\n" << flush;
}
return 0;
}
// Defines a mesh consisting of four flat rectangular surfaces connected to form
// a loop.
Mesh * GetMesh(int type)
{
Mesh * mesh = NULL;
if (type == 3)
{
mesh = new Mesh(2, 12, 16, 8, 3);
mesh->AddVertex(-1.0, -1.0, 0.0);
mesh->AddVertex( 1.0, -1.0, 0.0);
mesh->AddVertex( 1.0, 1.0, 0.0);
mesh->AddVertex(-1.0, 1.0, 0.0);
mesh->AddVertex(-1.0, -1.0, 1.0);
mesh->AddVertex( 1.0, -1.0, 1.0);
mesh->AddVertex( 1.0, 1.0, 1.0);
mesh->AddVertex(-1.0, 1.0, 1.0);
mesh->AddVertex( 0.0, -1.0, 0.5);
mesh->AddVertex( 1.0, 0.0, 0.5);
mesh->AddVertex( 0.0, 1.0, 0.5);
mesh->AddVertex(-1.0, 0.0, 0.5);
mesh->AddTriangle(0, 1, 8);
mesh->AddTriangle(1, 5, 8);
mesh->AddTriangle(5, 4, 8);
mesh->AddTriangle(4, 0, 8);
mesh->AddTriangle(1, 2, 9);
mesh->AddTriangle(2, 6, 9);
mesh->AddTriangle(6, 5, 9);
mesh->AddTriangle(5, 1, 9);
mesh->AddTriangle(2, 3, 10);
mesh->AddTriangle(3, 7, 10);
mesh->AddTriangle(7, 6, 10);
mesh->AddTriangle(6, 2, 10);
mesh->AddTriangle(3, 0, 11);
mesh->AddTriangle(0, 4, 11);
mesh->AddTriangle(4, 7, 11);
mesh->AddTriangle(7, 3, 11);
mesh->AddBdrSegment(0, 1, 1);
mesh->AddBdrSegment(1, 2, 1);
mesh->AddBdrSegment(2, 3, 1);
mesh->AddBdrSegment(3, 0, 1);
mesh->AddBdrSegment(5, 4, 2);
mesh->AddBdrSegment(6, 5, 2);
mesh->AddBdrSegment(7, 6, 2);
mesh->AddBdrSegment(4, 7, 2);
}
else if (type == 4)
{
mesh = new Mesh(2, 8, 4, 8, 3);
mesh->AddVertex(-1.0, -1.0, 0.0);
mesh->AddVertex( 1.0, -1.0, 0.0);
mesh->AddVertex( 1.0, 1.0, 0.0);
mesh->AddVertex(-1.0, 1.0, 0.0);
mesh->AddVertex(-1.0, -1.0, 1.0);
mesh->AddVertex( 1.0, -1.0, 1.0);
mesh->AddVertex( 1.0, 1.0, 1.0);
mesh->AddVertex(-1.0, 1.0, 1.0);
mesh->AddQuad(0, 1, 5, 4);
mesh->AddQuad(1, 2, 6, 5);
mesh->AddQuad(2, 3, 7, 6);
mesh->AddQuad(3, 0, 4, 7);
mesh->AddBdrSegment(0, 1, 1);
mesh->AddBdrSegment(1, 2, 1);
mesh->AddBdrSegment(2, 3, 1);
mesh->AddBdrSegment(3, 0, 1);
mesh->AddBdrSegment(5, 4, 2);
mesh->AddBdrSegment(6, 5, 2);
mesh->AddBdrSegment(7, 6, 2);
mesh->AddBdrSegment(4, 7, 2);
}
else
{
MFEM_ABORT("Unrecognized mesh type " << type << "!");
}
mesh->FinalizeTopology();
return mesh;
}
// Transforms the four-sided loop into a curved cylinder with skewed top and
// base.
void trans(const Vector &x, Vector &r)
{
r.SetSize(3);
real_t tol = 1e-6;
real_t theta = 0.0;
if (fabs(x[1] + 1.0) < tol)
{
theta = 0.25 * M_PI * (x[0] - 2.0);
}
else if (fabs(x[0] - 1.0) < tol)
{
theta = 0.25 * M_PI * x[1];
}
else if (fabs(x[1] - 1.0) < tol)
{
theta = 0.25 * M_PI * (2.0 - x[0]);
}
else if (fabs(x[0] + 1.0) < tol)
{
theta = 0.25 * M_PI * (4.0 - x[1]);
}
else
{
cerr << "side not recognized "
<< x[0] << " " << x[1] << " " << x[2] << endl;
}
r[0] = cos(theta);
r[1] = sin(theta);
r[2] = 0.25 * (2.0 * x[2] - 1.0) * (r[0] + 2.0);
}
// Anisotropic diffusion coefficient
void sigmaFunc(const Vector &x, DenseMatrix &s)
{
s.SetSize(3);
real_t a = 17.0 - 2.0 * x[0] * (1.0 + x[0]);
s(0,0) = 0.5 + x[0] * x[0] * (8.0 / a - 0.5);
s(0,1) = x[0] * x[1] * (8.0 / a - 0.5);
s(0,2) = 0.0;
s(1,0) = s(0,1);
s(1,1) = 0.5 * x[0] * x[0] + 8.0 * x[1] * x[1] / a;
s(1,2) = 0.0;
s(2,0) = 0.0;
s(2,1) = 0.0;
s(2,2) = a / 32.0;
}
|