1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
|
// MFEM Example 30
//
// Compile with: make ex30
//
// Sample runs: ex30 -m ../data/square-disc.mesh -o 1
// ex30 -m ../data/square-disc.mesh -o 2
// ex30 -m ../data/square-disc.mesh -o 2 -me 1e+4
// ex30 -m ../data/square-disc-nurbs.mesh -o 2
// ex30 -m ../data/star.mesh -o 2 -eo 4
// ex30 -m ../data/fichera.mesh -o 2 -me 1e+5 -e 5e-2
// ex30 -m ../data/disc-nurbs.mesh -o 2
// ex30 -m ../data/ball-nurbs.mesh -o 2 -eo 3 -e 5e-2 -me 1e+5
// ex30 -m ../data/star-surf.mesh -o 2
// ex30 -m ../data/square-disc-surf.mesh -o 2
// ex30 -m ../data/amr-quad.mesh -l 2
//
// Description: This is an example of adaptive mesh refinement preprocessing
// which lowers the data oscillation [1] to a user-defined
// relative threshold. There is no PDE being solved.
//
// MFEM's capability to work with both conforming and
// nonconforming meshes is demonstrated in example 6. In some
// problems, the material data or loading data is not sufficiently
// resolved on the initial mesh. This missing fine scale data
// reduces the accuracy of the solution as well as the accuracy of
// some local error estimators. By preprocessing the mesh before
// solving the PDE, many issues can be avoided.
//
// [1] Morin, P., Nochetto, R. H., & Siebert, K. G. (2000). Data
// oscillation and convergence of adaptive FEM. SIAM Journal
// on Numerical Analysis, 38(2), 466-488.
//
// [2] Mitchell, W. F. (2013). A collection of 2D elliptic
// problems for testing adaptive grid refinement algorithms.
// Applied mathematics and computation, 220, 350-364.
#include "mfem.hpp"
#include <fstream>
#include <iostream>
using namespace std;
using namespace mfem;
// Piecewise-affine function which is sometimes mesh-conforming
real_t affine_function(const Vector &p)
{
real_t x = p(0), y = p(1);
if (x < 0.0)
{
return 1.0 + x + y;
}
else
{
return 1.0;
}
}
// Piecewise-constant function which is never mesh-conforming
real_t jump_function(const Vector &p)
{
if (p.Normlp(2.0) > 0.4 && p.Normlp(2.0) < 0.6)
{
return 1.0;
}
else
{
return 5.0;
}
}
// Singular function derived from the Laplacian of the "steep wavefront" problem
// in [2].
real_t singular_function(const Vector &p)
{
real_t x = p(0), y = p(1);
real_t alpha = 1000.0;
real_t xc = 0.75, yc = 0.5;
real_t r0 = 0.7;
real_t r = sqrt(pow(x - xc,2.0) + pow(y - yc,2.0));
real_t num = - ( alpha - pow(alpha,3) * (pow(r,2) - pow(r0,2)) );
real_t denom = pow(r * ( pow(alpha,2) * pow(r0,2) + pow(alpha,2) * pow(r,2) \
- 2 * pow(alpha,2) * r0 * r + 1.0 ),2);
denom = std::max(denom, (real_t) 1.0e-8);
return num / denom;
}
int main(int argc, char *argv[])
{
// 1. Parse command-line options.
const char *mesh_file = "../data/star.mesh";
int order = 1;
int nc_limit = 1;
int max_elems = 100*1000;
real_t double_max_elems = real_t(max_elems);
bool visualization = true;
real_t osc_threshold = 1e-3;
int enriched_order = 5;
OptionsParser args(argc, argv);
args.AddOption(&mesh_file, "-m", "--mesh",
"Mesh file to use.");
args.AddOption(&order, "-o", "--order",
"Finite element order (polynomial degree).");
args.AddOption(&nc_limit, "-l", "--nc-limit",
"Maximum level of hanging nodes.");
args.AddOption(&double_max_elems, "-me", "--max-elems",
"Stop after reaching this many elements.");
args.AddOption(&osc_threshold, "-e", "--error",
"relative data oscillation threshold.");
args.AddOption(&enriched_order, "-eo", "--enriched_order",
"Enriched quadrature order.");
args.AddOption(&visualization, "-vis", "--visualization", "-no-vis",
"--no-visualization",
"Enable or disable GLVis visualization.");
args.Parse();
if (!args.Good())
{
args.PrintUsage(cout);
return 1;
}
args.PrintOptions(cout);
max_elems = int(double_max_elems);
Mesh mesh(mesh_file, 1, 1);
// 2. Since a NURBS mesh can currently only be refined uniformly, we need to
// convert it to a piecewise-polynomial curved mesh. First we refine the
// NURBS mesh a bit and then project the curvature to quadratic Nodes.
if (mesh.NURBSext)
{
for (int i = 0; i < 2; i++)
{
mesh.UniformRefinement();
}
mesh.SetCurvature(2);
}
// 3. Define functions and refiner.
FunctionCoefficient affine_coeff(affine_function);
FunctionCoefficient jump_coeff(jump_function);
FunctionCoefficient singular_coeff(singular_function);
CoefficientRefiner coeffrefiner(affine_coeff, order);
// 4. Connect to GLVis.
char vishost[] = "localhost";
int visport = 19916;
socketstream sol_sock;
if (visualization)
{
sol_sock.open(vishost, visport);
}
// 5. Define custom integration rule (optional).
const IntegrationRule *irs[Geometry::NumGeom];
int order_quad = 2*order + enriched_order;
for (int i = 0; i < Geometry::NumGeom; ++i)
{
irs[i] = &(IntRules.Get(i, order_quad));
}
// 6. Apply custom refiner settings.
coeffrefiner.SetIntRule(irs);
coeffrefiner.SetMaxElements(max_elems);
coeffrefiner.SetThreshold(osc_threshold);
coeffrefiner.SetNCLimit(nc_limit);
coeffrefiner.PrintWarnings();
// 7. Preprocess mesh to control osc (piecewise-affine function). This is
// mostly just a verification check. The oscillation should be zero if the
// function is mesh-conforming and order > 0.
coeffrefiner.PreprocessMesh(mesh);
mfem::out << "\n";
mfem::out << "Function 0 (affine) \n";
mfem::out << "Number of Elements " << mesh.GetNE() << "\n";
mfem::out << "Osc error " << coeffrefiner.GetOsc() << "\n";
// 8. Preprocess mesh to control osc (jump function).
coeffrefiner.ResetCoefficient(jump_coeff);
coeffrefiner.PreprocessMesh(mesh);
mfem::out << "\n";
mfem::out << "Function 1 (discontinuous) \n";
mfem::out << "Number of Elements " << mesh.GetNE() << "\n";
mfem::out << "Osc error " << coeffrefiner.GetOsc() << "\n";
// 9. Preprocess mesh to control osc (singular function).
coeffrefiner.ResetCoefficient(singular_coeff);
coeffrefiner.PreprocessMesh(mesh);
mfem::out << "\n";
mfem::out << "Function 2 (singular) \n";
mfem::out << "Number of Elements " << mesh.GetNE() << "\n";
mfem::out << "Osc error " << coeffrefiner.GetOsc() << "\n";
if (visualization)
{
sol_sock.precision(8);
sol_sock << "mesh\n" << mesh << flush;
}
return 0;
}
|