1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
|
// MFEM Example 31 - Parallel Version
//
// Compile with: make ex31p
//
// Sample runs: mpirun -np 4 ex31p -m ../data/hexagon.mesh -o 2
// mpirun -np 4 ex31p -m ../data/star.mesh
// mpirun -np 4 ex31p -m ../data/square-disc.mesh -o 2
// mpirun -np 4 ex31p -m ../data/fichera.mesh -o 3 -rs 1 -rp 0
// mpirun -np 4 ex31p -m ../data/square-disc-nurbs.mesh -o 3
// mpirun -np 4 ex31p -m ../data/amr-quad.mesh -o 2 -rs 1
// mpirun -np 4 ex31p -m ../data/amr-hex.mesh -rs 1
//
// Description: This example code solves a simple electromagnetic diffusion
// problem corresponding to the second order definite Maxwell
// equation curl curl E + sigma E = f with boundary condition
// E x n = <given tangential field>. In this example sigma is an
// anisotropic 3x3 tensor. Here, we use a given exact solution E
// and compute the corresponding r.h.s. f. We discretize with
// Nedelec finite elements in 1D, 2D, or 3D.
//
// The example demonstrates the use of restricted H(curl) finite
// element spaces with the curl-curl and the (vector finite
// element) mass bilinear form, as well as the computation of
// discretization error when the exact solution is known. These
// restricted spaces allow the solution of 1D or 2D
// electromagnetic problems which involve 3D field vectors. Such
// problems arise in plasma physics and crystallography.
//
// We recommend viewing example 3 before viewing this example.
#include "mfem.hpp"
#include <fstream>
#include <iostream>
using namespace std;
using namespace mfem;
// Exact solution, E, and r.h.s., f. See below for implementation.
void E_exact(const Vector &, Vector &);
void CurlE_exact(const Vector &, Vector &);
void f_exact(const Vector &, Vector &);
real_t freq = 1.0, kappa;
int dim;
int main(int argc, char *argv[])
{
// 1. Initialize MPI.
Mpi::Init(argc, argv);
int num_procs = Mpi::WorldSize();
int myid = Mpi::WorldRank();
Hypre::Init();
// 2. Parse command-line options.
const char *mesh_file = "../data/inline-quad.mesh";
int ser_ref_levels = 2;
int par_ref_levels = 1;
int order = 1;
bool use_ams = true;
bool visualization = 1;
OptionsParser args(argc, argv);
args.AddOption(&mesh_file, "-m", "--mesh",
"Mesh file to use.");
args.AddOption(&ser_ref_levels, "-rs", "--refine-serial",
"Number of times to refine the mesh uniformly in serial.");
args.AddOption(&par_ref_levels, "-rp", "--refine-parallel",
"Number of times to refine the mesh uniformly in parallel.");
args.AddOption(&order, "-o", "--order",
"Finite element order (polynomial degree).");
args.AddOption(&freq, "-f", "--frequency", "Set the frequency for the exact"
" solution.");
args.AddOption(&use_ams, "-ams", "--hypre-ams", "-slu",
"--superlu", "Use AMS or SuperLU solver.");
args.AddOption(&visualization, "-vis", "--visualization", "-no-vis",
"--no-visualization",
"Enable or disable GLVis visualization.");
args.ParseCheck();
kappa = freq * M_PI;
// 3. Read the (serial) mesh from the given mesh file on all processors. We
// can handle triangular, quadrilateral, tetrahedral, hexahedral, surface
// and volume meshes with the same code.
Mesh *mesh = new Mesh(mesh_file, 1, 1);
dim = mesh->Dimension();
// 4. Refine the serial mesh on all processors to increase the resolution. In
// this example we do 'ref_levels' of uniform refinement (2 by default, or
// specified on the command line with -rs).
for (int lev = 0; lev < ser_ref_levels; lev++)
{
mesh->UniformRefinement();
}
// 5. Define a parallel mesh by a partitioning of the serial mesh. Refine
// this mesh further in parallel to increase the resolution (1 time by
// default, or specified on the command line with -rp). Once the parallel
// mesh is defined, the serial mesh can be deleted.
ParMesh pmesh(MPI_COMM_WORLD, *mesh);
delete mesh;
for (int lev = 0; lev < par_ref_levels; lev++)
{
pmesh.UniformRefinement();
}
// 6. Define a parallel finite element space on the parallel mesh. Here we
// use the Nedelec finite elements of the specified order.
FiniteElementCollection *fec = NULL;
if (dim == 1)
{
fec = new ND_R1D_FECollection(order, dim);
}
else if (dim == 2)
{
fec = new ND_R2D_FECollection(order, dim);
}
else
{
fec = new ND_FECollection(order, dim);
}
ParFiniteElementSpace fespace(&pmesh, fec);
HYPRE_Int size = fespace.GlobalTrueVSize();
if (Mpi::Root()) { cout << "Number of H(Curl) unknowns: " << size << endl; }
// 7. Determine the list of true (i.e. parallel conforming) essential
// boundary dofs. In this example, the boundary conditions are defined
// by marking all the boundary attributes from the mesh as essential
// (Dirichlet) and converting them to a list of true dofs.
Array<int> ess_tdof_list;
if (pmesh.bdr_attributes.Size())
{
Array<int> ess_bdr(pmesh.bdr_attributes.Max());
ess_bdr = 1;
fespace.GetEssentialTrueDofs(ess_bdr, ess_tdof_list);
}
// 8. Set up the parallel linear form b(.) which corresponds to the
// right-hand side of the FEM linear system, which in this case is
// (f,phi_i) where f is given by the function f_exact and phi_i are the
// basis functions in the finite element fespace.
VectorFunctionCoefficient f(3, f_exact);
ParLinearForm b(&fespace);
b.AddDomainIntegrator(new VectorFEDomainLFIntegrator(f));
b.Assemble();
// 9. Define the solution vector x as a parallel finite element grid function
// corresponding to fespace. Initialize x by projecting the exact
// solution. Note that only values from the boundary edges will be used
// when eliminating the non-homogeneous boundary condition to modify the
// r.h.s. vector b.
ParGridFunction sol(&fespace);
VectorFunctionCoefficient E(3, E_exact);
VectorFunctionCoefficient CurlE(3, CurlE_exact);
sol.ProjectCoefficient(E);
// 10. Set up the parallel bilinear form corresponding to the EM diffusion
// operator curl muinv curl + sigma I, by adding the curl-curl and the
// mass domain integrators.
DenseMatrix sigmaMat(3);
sigmaMat(0,0) = 2.0; sigmaMat(1,1) = 2.0; sigmaMat(2,2) = 2.0;
sigmaMat(0,2) = 0.0; sigmaMat(2,0) = 0.0;
sigmaMat(0,1) = M_SQRT1_2; sigmaMat(1,0) = M_SQRT1_2; // 1/sqrt(2) in cmath
sigmaMat(1,2) = M_SQRT1_2; sigmaMat(2,1) = M_SQRT1_2;
ConstantCoefficient muinv(1.0);
MatrixConstantCoefficient sigma(sigmaMat);
ParBilinearForm a(&fespace);
a.AddDomainIntegrator(new CurlCurlIntegrator(muinv));
a.AddDomainIntegrator(new VectorFEMassIntegrator(sigma));
// 11. Assemble the parallel bilinear form and the corresponding linear
// system, applying any necessary transformations such as: parallel
// assembly, eliminating boundary conditions, applying conforming
// constraints for non-conforming AMR, etc.
a.Assemble();
OperatorPtr A;
Vector B, X;
a.FormLinearSystem(ess_tdof_list, sol, b, A, X, B);
// 12. Solve the system AX=B using PCG with the AMS preconditioner from hypre
if (use_ams)
{
if (Mpi::Root())
{
cout << "Size of linear system: "
<< A.As<HypreParMatrix>()->GetGlobalNumRows() << endl;
}
HypreAMS ams(*A.As<HypreParMatrix>(), &fespace);
HyprePCG pcg(*A.As<HypreParMatrix>());
pcg.SetTol(1e-12);
pcg.SetMaxIter(1000);
pcg.SetPrintLevel(2);
pcg.SetPreconditioner(ams);
pcg.Mult(B, X);
}
else
#ifdef MFEM_USE_SUPERLU
{
if (Mpi::Root())
{
cout << "Size of linear system: "
<< A.As<HypreParMatrix>()->GetGlobalNumRows() << endl;
}
SuperLURowLocMatrix A_SuperLU(*A.As<HypreParMatrix>());
SuperLUSolver AInv(MPI_COMM_WORLD);
AInv.SetOperator(A_SuperLU);
AInv.Mult(B,X);
}
#else
{
if (Mpi::Root()) { cout << "No solvers available." << endl; }
return 1;
}
#endif
// 13. Recover the parallel grid function corresponding to X. This is the
// local finite element solution on each processor.
a.RecoverFEMSolution(X, b, sol);
// 14. Compute and print the H(Curl) norm of the error.
{
real_t error = sol.ComputeHCurlError(&E, &CurlE);
if (Mpi::Root())
{
cout << "\n|| E_h - E ||_{H(Curl)} = " << error << '\n' << endl;
}
}
// 15. Save the refined mesh and the solution in parallel. This output can
// be viewed later using GLVis: "glvis -np <np> -m mesh -g sol".
{
ostringstream mesh_name, sol_name;
mesh_name << "mesh." << setfill('0') << setw(6) << myid;
sol_name << "sol." << setfill('0') << setw(6) << myid;
ofstream mesh_ofs(mesh_name.str().c_str());
mesh_ofs.precision(8);
pmesh.Print(mesh_ofs);
ofstream sol_ofs(sol_name.str().c_str());
sol_ofs.precision(8);
sol.Save(sol_ofs);
}
// 16. Send the solution by socket to a GLVis server.
if (visualization)
{
char vishost[] = "localhost";
int visport = 19916;
VectorGridFunctionCoefficient solCoef(&sol);
CurlGridFunctionCoefficient dsolCoef(&sol);
if (dim ==1)
{
socketstream x_sock(vishost, visport);
socketstream y_sock(vishost, visport);
socketstream z_sock(vishost, visport);
socketstream dy_sock(vishost, visport);
socketstream dz_sock(vishost, visport);
x_sock.precision(8);
y_sock.precision(8);
z_sock.precision(8);
dy_sock.precision(8);
dz_sock.precision(8);
Vector xVec(3); xVec = 0.0; xVec(0) = 1;
Vector yVec(3); yVec = 0.0; yVec(1) = 1;
Vector zVec(3); zVec = 0.0; zVec(2) = 1;
VectorConstantCoefficient xVecCoef(xVec);
VectorConstantCoefficient yVecCoef(yVec);
VectorConstantCoefficient zVecCoef(zVec);
H1_FECollection fec_h1(order, dim);
L2_FECollection fec_l2(order-1, dim);
ParFiniteElementSpace fes_h1(&pmesh, &fec_h1);
ParFiniteElementSpace fes_l2(&pmesh, &fec_l2);
ParGridFunction xComp(&fes_l2);
ParGridFunction yComp(&fes_h1);
ParGridFunction zComp(&fes_h1);
ParGridFunction dyComp(&fes_l2);
ParGridFunction dzComp(&fes_l2);
InnerProductCoefficient xCoef(xVecCoef, solCoef);
InnerProductCoefficient yCoef(yVecCoef, solCoef);
InnerProductCoefficient zCoef(zVecCoef, solCoef);
xComp.ProjectCoefficient(xCoef);
yComp.ProjectCoefficient(yCoef);
zComp.ProjectCoefficient(zCoef);
x_sock << "parallel " << num_procs << " " << myid << "\n"
<< "solution\n" << pmesh << xComp << flush
<< "window_title 'X component'" << endl;
y_sock << "parallel " << num_procs << " " << myid << "\n"
<< "solution\n" << pmesh << yComp << flush
<< "window_geometry 403 0 400 350 "
<< "window_title 'Y component'" << endl;
z_sock << "parallel " << num_procs << " " << myid << "\n"
<< "solution\n" << pmesh << zComp << flush
<< "window_geometry 806 0 400 350 "
<< "window_title 'Z component'" << endl;
InnerProductCoefficient dyCoef(yVecCoef, dsolCoef);
InnerProductCoefficient dzCoef(zVecCoef, dsolCoef);
dyComp.ProjectCoefficient(dyCoef);
dzComp.ProjectCoefficient(dzCoef);
dy_sock << "parallel " << num_procs << " " << myid << "\n"
<< "solution\n" << pmesh << dyComp << flush
<< "window_geometry 403 375 400 350 "
<< "window_title 'Y component of Curl'" << endl;
dz_sock << "parallel " << num_procs << " " << myid << "\n"
<< "solution\n" << pmesh << dzComp << flush
<< "window_geometry 806 375 400 350 "
<< "window_title 'Z component of Curl'" << endl;
}
else if (dim == 2)
{
socketstream xy_sock(vishost, visport);
socketstream z_sock(vishost, visport);
socketstream dxy_sock(vishost, visport);
socketstream dz_sock(vishost, visport);
DenseMatrix xyMat(2,3); xyMat = 0.0;
xyMat(0,0) = 1.0; xyMat(1,1) = 1.0;
MatrixConstantCoefficient xyMatCoef(xyMat);
Vector zVec(3); zVec = 0.0; zVec(2) = 1;
VectorConstantCoefficient zVecCoef(zVec);
MatrixVectorProductCoefficient xyCoef(xyMatCoef, solCoef);
InnerProductCoefficient zCoef(zVecCoef, solCoef);
H1_FECollection fec_h1(order, dim);
ND_FECollection fec_nd(order, dim);
RT_FECollection fec_rt(order-1, dim);
L2_FECollection fec_l2(order-1, dim);
ParFiniteElementSpace fes_h1(&pmesh, &fec_h1);
ParFiniteElementSpace fes_nd(&pmesh, &fec_nd);
ParFiniteElementSpace fes_rt(&pmesh, &fec_rt);
ParFiniteElementSpace fes_l2(&pmesh, &fec_l2);
ParGridFunction xyComp(&fes_nd);
ParGridFunction zComp(&fes_h1);
ParGridFunction dxyComp(&fes_rt);
ParGridFunction dzComp(&fes_l2);
xyComp.ProjectCoefficient(xyCoef);
zComp.ProjectCoefficient(zCoef);
xy_sock << "parallel " << num_procs << " " << myid << "\n";
xy_sock.precision(8);
xy_sock << "solution\n" << pmesh << xyComp
<< "window_title 'XY components'\n" << flush;
z_sock << "parallel " << num_procs << " " << myid << "\n"
<< "solution\n" << pmesh << zComp << flush
<< "window_geometry 403 0 400 350 "
<< "window_title 'Z component'" << endl;
MatrixVectorProductCoefficient dxyCoef(xyMatCoef, dsolCoef);
InnerProductCoefficient dzCoef(zVecCoef, dsolCoef);
dxyComp.ProjectCoefficient(dxyCoef);
dzComp.ProjectCoefficient(dzCoef);
dxy_sock << "parallel " << num_procs << " " << myid << "\n"
<< "solution\n" << pmesh << dxyComp << flush
<< "window_geometry 0 375 400 350 "
<< "window_title 'XY components of Curl'" << endl;
dz_sock << "parallel " << num_procs << " " << myid << "\n"
<< "solution\n" << pmesh << dzComp << flush
<< "window_geometry 403 375 400 350 "
<< "window_title 'Z component of Curl'" << endl;
}
else
{
socketstream sol_sock(vishost, visport);
socketstream dsol_sock(vishost, visport);
RT_FECollection fec_rt(order-1, dim);
ParFiniteElementSpace fes_rt(&pmesh, &fec_rt);
ParGridFunction dsol(&fes_rt);
dsol.ProjectCoefficient(dsolCoef);
sol_sock << "parallel " << num_procs << " " << myid << "\n";
sol_sock.precision(8);
sol_sock << "solution\n" << pmesh << sol
<< "window_title 'Solution'" << flush << endl;
dsol_sock << "parallel " << num_procs << " " << myid << "\n"
<< "solution\n" << pmesh << dsol << flush
<< "window_geometry 0 375 400 350 "
<< "window_title 'Curl of solution'" << endl;
}
}
// 17. Free the used memory.
delete fec;
return 0;
}
void E_exact(const Vector &x, Vector &E)
{
if (dim == 1)
{
E(0) = 1.1 * sin(kappa * x(0) + 0.0 * M_PI);
E(1) = 1.2 * sin(kappa * x(0) + 0.4 * M_PI);
E(2) = 1.3 * sin(kappa * x(0) + 0.9 * M_PI);
}
else if (dim == 2)
{
E(0) = 1.1 * sin(kappa * M_SQRT1_2 * (x(0) + x(1)) + 0.0 * M_PI);
E(1) = 1.2 * sin(kappa * M_SQRT1_2 * (x(0) + x(1)) + 0.4 * M_PI);
E(2) = 1.3 * sin(kappa * M_SQRT1_2 * (x(0) + x(1)) + 0.9 * M_PI);
}
else
{
E(0) = 1.1 * sin(kappa * M_SQRT1_2 * (x(0) + x(1)) + 0.0 * M_PI);
E(1) = 1.2 * sin(kappa * M_SQRT1_2 * (x(0) + x(1)) + 0.4 * M_PI);
E(2) = 1.3 * sin(kappa * M_SQRT1_2 * (x(0) + x(1)) + 0.9 * M_PI);
E *= cos(kappa * x(2));
}
}
void CurlE_exact(const Vector &x, Vector &dE)
{
if (dim == 1)
{
real_t c4 = cos(kappa * x(0) + 0.4 * M_PI);
real_t c9 = cos(kappa * x(0) + 0.9 * M_PI);
dE(0) = 0.0;
dE(1) = -1.3 * c9;
dE(2) = 1.2 * c4;
dE *= kappa;
}
else if (dim == 2)
{
real_t c0 = cos(kappa * M_SQRT1_2 * (x(0) + x(1)) + 0.0 * M_PI);
real_t c4 = cos(kappa * M_SQRT1_2 * (x(0) + x(1)) + 0.4 * M_PI);
real_t c9 = cos(kappa * M_SQRT1_2 * (x(0) + x(1)) + 0.9 * M_PI);
dE(0) = 1.3 * c9;
dE(1) = -1.3 * c9;
dE(2) = 1.2 * c4 - 1.1 * c0;
dE *= kappa * M_SQRT1_2;
}
else
{
real_t s0 = sin(kappa * M_SQRT1_2 * (x(0) + x(1)) + 0.0 * M_PI);
real_t c0 = cos(kappa * M_SQRT1_2 * (x(0) + x(1)) + 0.0 * M_PI);
real_t s4 = sin(kappa * M_SQRT1_2 * (x(0) + x(1)) + 0.4 * M_PI);
real_t c4 = cos(kappa * M_SQRT1_2 * (x(0) + x(1)) + 0.4 * M_PI);
real_t c9 = cos(kappa * M_SQRT1_2 * (x(0) + x(1)) + 0.9 * M_PI);
real_t sk = sin(kappa * x(2));
real_t ck = cos(kappa * x(2));
dE(0) = 1.2 * s4 * sk + 1.3 * M_SQRT1_2 * c9 * ck;
dE(1) = -1.1 * s0 * sk - 1.3 * M_SQRT1_2 * c9 * ck;
dE(2) = -M_SQRT1_2 * (1.1 * c0 - 1.2 * c4) * ck;
dE *= kappa;
}
}
void f_exact(const Vector &x, Vector &f)
{
if (dim == 1)
{
real_t s0 = sin(kappa * x(0) + 0.0 * M_PI);
real_t s4 = sin(kappa * x(0) + 0.4 * M_PI);
real_t s9 = sin(kappa * x(0) + 0.9 * M_PI);
f(0) = 2.2 * s0 + 1.2 * M_SQRT1_2 * s4;
f(1) = 1.2 * (2.0 + kappa * kappa) * s4 +
M_SQRT1_2 * (1.1 * s0 + 1.3 * s9);
f(2) = 1.3 * (2.0 + kappa * kappa) * s9 + 1.2 * M_SQRT1_2 * s4;
}
else if (dim == 2)
{
real_t s0 = sin(kappa * M_SQRT1_2 * (x(0) + x(1)) + 0.0 * M_PI);
real_t s4 = sin(kappa * M_SQRT1_2 * (x(0) + x(1)) + 0.4 * M_PI);
real_t s9 = sin(kappa * M_SQRT1_2 * (x(0) + x(1)) + 0.9 * M_PI);
f(0) = 0.55 * (4.0 + kappa * kappa) * s0 +
0.6 * (M_SQRT2 - kappa * kappa) * s4;
f(1) = 0.55 * (M_SQRT2 - kappa * kappa) * s0 +
0.6 * (4.0 + kappa * kappa) * s4 +
0.65 * M_SQRT2 * s9;
f(2) = 0.6 * M_SQRT2 * s4 + 1.3 * (2.0 + kappa * kappa) * s9;
}
else
{
real_t s0 = sin(kappa * M_SQRT1_2 * (x(0) + x(1)) + 0.0 * M_PI);
real_t c0 = cos(kappa * M_SQRT1_2 * (x(0) + x(1)) + 0.0 * M_PI);
real_t s4 = sin(kappa * M_SQRT1_2 * (x(0) + x(1)) + 0.4 * M_PI);
real_t c4 = cos(kappa * M_SQRT1_2 * (x(0) + x(1)) + 0.4 * M_PI);
real_t s9 = sin(kappa * M_SQRT1_2 * (x(0) + x(1)) + 0.9 * M_PI);
real_t c9 = cos(kappa * M_SQRT1_2 * (x(0) + x(1)) + 0.9 * M_PI);
real_t sk = sin(kappa * x(2));
real_t ck = cos(kappa * x(2));
f(0) = 0.55 * (4.0 + 3.0 * kappa * kappa) * s0 * ck +
0.6 * (M_SQRT2 - kappa * kappa) * s4 * ck -
0.65 * M_SQRT2 * kappa * kappa * c9 * sk;
f(1) = 0.55 * (M_SQRT2 - kappa * kappa) * s0 * ck +
0.6 * (4.0 + 3.0 * kappa * kappa) * s4 * ck +
0.65 * M_SQRT2 * s9 * ck -
0.65 * M_SQRT2 * kappa * kappa * c9 * sk;
f(2) = 0.6 * M_SQRT2 * s4 * ck -
M_SQRT2 * kappa * kappa * (0.55 * c0 + 0.6 * c4) * sk
+ 1.3 * (2.0 + kappa * kappa) * s9 * ck;
}
}
|