1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
|
// MFEM Example 32 - Parallel Version
//
// Compile with: make ex32p
//
// Sample runs: mpirun -np 4 ex32p -m ../data/hexagon.mesh -o 2
// mpirun -np 4 ex32p -m ../data/star.mesh
// mpirun -np 4 ex32p -m ../data/square-disc.mesh -o 2 -n 4 -rs 1
// mpirun -np 4 ex32p -m ../data/square-disc-nurbs.mesh -rs 3 -o 3
// mpirun -np 4 ex32p -m ../data/amr-quad.mesh -o 2 -rs 1
// mpirun -np 4 ex32p -m ../data/amr-hex.mesh -rs 1
// mpirun -np 4 ex32p -m ../data/fichera.mesh -rs 1
//
// Description: This example code solves the Maxwell (electromagnetic)
// eigenvalue problem curl curl E = lambda epsilon E with an
// anisotropic dielectric tensor, epsilon, and homogeneous
// Dirichlet boundary conditions E x n = 0.
//
// We compute a number of the lowest nonzero eigenmodes by
// discretizing the curl curl operator using a Nedelec FE space of
// the specified order in 1D, 2D, or 3D.
//
// The example highlights the use of restricted H(curl) finite
// element spaces with the AME subspace eigenvalue solver from
// HYPRE, which uses LOBPCG and AMS internally. Reusing a single
// GLVis visualization window for multiple eigenfunctions is also
// illustrated.
//
// We recommend viewing examples 31 and 13 before viewing this
// example.
#include "mfem.hpp"
#include <fstream>
#include <iostream>
using namespace std;
using namespace mfem;
real_t GetVectorMax(int vdim, const ParGridFunction &x);
real_t GetScalarMax(const ParGridFunction &x);
int main(int argc, char *argv[])
{
// 1. Initialize MPI.
Mpi::Init(argc, argv);
int num_procs = Mpi::WorldSize();
int myid = Mpi::WorldRank();
Hypre::Init();
// 2. Parse command-line options.
const char *mesh_file = "../data/inline-quad.mesh";
int ser_ref_levels = 2;
int par_ref_levels = 1;
int order = 1;
int nev = 5;
bool visualization = 1;
OptionsParser args(argc, argv);
args.AddOption(&mesh_file, "-m", "--mesh",
"Mesh file to use.");
args.AddOption(&ser_ref_levels, "-rs", "--refine-serial",
"Number of times to refine the mesh uniformly in serial.");
args.AddOption(&par_ref_levels, "-rp", "--refine-parallel",
"Number of times to refine the mesh uniformly in parallel.");
args.AddOption(&order, "-o", "--order",
"Finite element order (polynomial degree) or -1 for"
" isoparametric space.");
args.AddOption(&nev, "-n", "--num-eigs",
"Number of desired eigenmodes.");
args.AddOption(&visualization, "-vis", "--visualization", "-no-vis",
"--no-visualization",
"Enable or disable GLVis visualization.");
args.ParseCheck();
// 3. Read the (serial) mesh from the given mesh file on all processors. We
// can handle triangular, quadrilateral, tetrahedral, hexahedral, surface
// and volume meshes with the same code.
Mesh *mesh = new Mesh(mesh_file, 1, 1);
int dim = mesh->Dimension();
Vector bbMin(dim);
Vector bbMax(dim);
mesh->GetBoundingBox(bbMin, bbMax);
// 4. Refine the serial mesh on all processors to increase the resolution. In
// this example we do 'ref_levels' of uniform refinement (2 by default, or
// specified on the command line with -rs).
for (int lev = 0; lev < ser_ref_levels; lev++)
{
mesh->UniformRefinement();
}
// 5. Define a parallel mesh by a partitioning of the serial mesh. Refine
// this mesh further in parallel to increase the resolution (1 time by
// default, or specified on the command line with -rp). Once the parallel
// mesh is defined, the serial mesh can be deleted.
ParMesh pmesh(MPI_COMM_WORLD, *mesh);
delete mesh;
for (int lev = 0; lev < par_ref_levels; lev++)
{
pmesh.UniformRefinement();
}
// 6. Define a parallel finite element space on the parallel mesh. Here we
// use the Nedelec finite elements of the specified order.
FiniteElementCollection *fec_nd = NULL;
FiniteElementCollection *fec_rt = NULL;
if (dim == 1)
{
fec_nd = new ND_R1D_FECollection(order, dim);
fec_rt = new RT_R1D_FECollection(order-1, dim);
}
else if (dim == 2)
{
fec_nd = new ND_R2D_FECollection(order, dim);
fec_rt = new RT_R2D_FECollection(order-1, dim);
}
else
{
fec_nd = new ND_FECollection(order, dim);
fec_rt = new RT_FECollection(order-1, dim);
}
ParFiniteElementSpace fespace_nd(&pmesh, fec_nd);
ParFiniteElementSpace fespace_rt(&pmesh, fec_rt);
HYPRE_Int size_nd = fespace_nd.GlobalTrueVSize();
HYPRE_Int size_rt = fespace_rt.GlobalTrueVSize();
if (Mpi::Root())
{
cout << "Number of H(Curl) unknowns: " << size_nd << endl;
cout << "Number of H(Div) unknowns: " << size_rt << endl;
}
// 7. Set up the parallel bilinear forms a(.,.) and m(.,.) on the finite
// element space. The first corresponds to the curl curl, while the second
// is a simple mass matrix needed on the right hand side of the
// generalized eigenvalue problem below. The boundary conditions are
// implemented by marking all the boundary attributes from the mesh as
// essential. The corresponding degrees of freedom are eliminated with
// special values on the diagonal to shift the Dirichlet eigenvalues out
// of the computational range. After serial and parallel assembly we
// extract the corresponding parallel matrices A and M.
HypreParMatrix *A = NULL;
HypreParMatrix *M = NULL;
real_t shift = 0.0;
{
DenseMatrix epsilonMat(3);
epsilonMat(0,0) = 2.0; epsilonMat(1,1) = 2.0; epsilonMat(2,2) = 2.0;
epsilonMat(0,2) = 0.0; epsilonMat(2,0) = 0.0;
epsilonMat(0,1) = M_SQRT1_2; epsilonMat(1,0) = M_SQRT1_2;
epsilonMat(1,2) = M_SQRT1_2; epsilonMat(2,1) = M_SQRT1_2;
MatrixConstantCoefficient epsilon(epsilonMat);
ConstantCoefficient one(1.0);
Array<int> ess_bdr;
if (pmesh.bdr_attributes.Size())
{
ess_bdr.SetSize(pmesh.bdr_attributes.Max());
ess_bdr = 1;
}
ParBilinearForm a(&fespace_nd);
a.AddDomainIntegrator(new CurlCurlIntegrator(one));
if (pmesh.bdr_attributes.Size() == 0 || dim == 1)
{
// Add a mass term if the mesh has no boundary, e.g. periodic mesh or
// closed surface.
a.AddDomainIntegrator(new VectorFEMassIntegrator(epsilon));
shift = 1.0;
if (Mpi::Root())
{
cout << "Computing eigenvalues shifted by " << shift << endl;
}
}
a.Assemble();
a.EliminateEssentialBCDiag(ess_bdr, 1.0);
a.Finalize();
ParBilinearForm m(&fespace_nd);
m.AddDomainIntegrator(new VectorFEMassIntegrator(epsilon));
m.Assemble();
// shift the eigenvalue corresponding to eliminated dofs to a large value
m.EliminateEssentialBCDiag(ess_bdr, numeric_limits<real_t>::min());
m.Finalize();
A = a.ParallelAssemble();
M = m.ParallelAssemble();
}
// 8. Define and configure the AME eigensolver and the AMS preconditioner for
// A to be used within the solver. Set the matrices which define the
// generalized eigenproblem A x = lambda M x.
HypreAMS *ams = new HypreAMS(*A,&fespace_nd);
ams->SetPrintLevel(0);
ams->SetSingularProblem();
HypreAME *ame = new HypreAME(MPI_COMM_WORLD);
ame->SetNumModes(nev);
ame->SetPreconditioner(*ams);
ame->SetMaxIter(100);
ame->SetTol(1e-8);
ame->SetPrintLevel(1);
ame->SetMassMatrix(*M);
ame->SetOperator(*A);
// 9. Compute the eigenmodes and extract the array of eigenvalues. Define
// parallel grid functions to represent each of the eigenmodes returned by
// the solver and their derivatives.
Array<real_t> eigenvalues;
ame->Solve();
ame->GetEigenvalues(eigenvalues);
ParGridFunction x(&fespace_nd);
ParGridFunction dx(&fespace_rt);
ParDiscreteLinearOperator curl(&fespace_nd, &fespace_rt);
curl.AddDomainInterpolator(new CurlInterpolator);
curl.Assemble();
curl.Finalize();
// 10. Save the refined mesh and the modes in parallel. This output can be
// viewed later using GLVis: "glvis -np <np> -m mesh -g mode".
{
ostringstream mesh_name, mode_name, mode_deriv_name;
mesh_name << "mesh." << setfill('0') << setw(6) << myid;
ofstream mesh_ofs(mesh_name.str().c_str());
mesh_ofs.precision(8);
pmesh.Print(mesh_ofs);
for (int i=0; i<nev; i++)
{
// convert eigenvector from HypreParVector to ParGridFunction
x = ame->GetEigenvector(i);
curl.Mult(x, dx);
mode_name << "mode_" << setfill('0') << setw(2) << i << "."
<< setfill('0') << setw(6) << myid;
mode_deriv_name << "mode_deriv_" << setfill('0') << setw(2) << i << "."
<< setfill('0') << setw(6) << myid;
ofstream mode_ofs(mode_name.str().c_str());
mode_ofs.precision(8);
x.Save(mode_ofs);
mode_name.str("");
ofstream mode_deriv_ofs(mode_deriv_name.str().c_str());
mode_deriv_ofs.precision(8);
dx.Save(mode_deriv_ofs);
mode_deriv_name.str("");
}
}
// 11. Send the solution by socket to a GLVis server.
if (visualization)
{
char vishost[] = "localhost";
int visport = 19916;
if (dim == 1)
{
socketstream mode_x_sock(vishost, visport);
socketstream mode_y_sock(vishost, visport);
socketstream mode_z_sock(vishost, visport);
socketstream mode_dy_sock(vishost, visport);
socketstream mode_dz_sock(vishost, visport);
mode_x_sock.precision(8);
mode_y_sock.precision(8);
mode_z_sock.precision(8);
mode_dy_sock.precision(8);
mode_dz_sock.precision(8);
Vector xVec(3); xVec = 0.0; xVec(0) = 1;
Vector yVec(3); yVec = 0.0; yVec(1) = 1;
Vector zVec(3); zVec = 0.0; zVec(2) = 1;
VectorConstantCoefficient xVecCoef(xVec);
VectorConstantCoefficient yVecCoef(yVec);
VectorConstantCoefficient zVecCoef(zVec);
H1_FECollection fec_h1(order, dim);
L2_FECollection fec_l2(order-1, dim);
ParFiniteElementSpace fes_h1(&pmesh, &fec_h1);
ParFiniteElementSpace fes_l2(&pmesh, &fec_l2);
ParGridFunction xComp(&fes_l2);
ParGridFunction yComp(&fes_h1);
ParGridFunction zComp(&fes_h1);
ParGridFunction dyComp(&fes_l2);
ParGridFunction dzComp(&fes_l2);
for (int i=0; i<nev; i++)
{
if (Mpi::Root())
{
cout << "Eigenmode " << i+1 << '/' << nev
<< ", Lambda = " << eigenvalues[i] - shift << endl;
}
// convert eigenvector from HypreParVector to ParGridFunction
x = ame->GetEigenvector(i);
curl.Mult(x, dx);
{
VectorGridFunctionCoefficient modeCoef(&x);
InnerProductCoefficient xCoef(xVecCoef, modeCoef);
InnerProductCoefficient yCoef(yVecCoef, modeCoef);
InnerProductCoefficient zCoef(zVecCoef, modeCoef);
xComp.ProjectCoefficient(xCoef);
yComp.ProjectCoefficient(yCoef);
zComp.ProjectCoefficient(zCoef);
real_t max_x = GetScalarMax(xComp);
real_t max_y = GetScalarMax(yComp);
real_t max_z = GetScalarMax(zComp);
real_t max_r = std::max(max_x, std::max(max_y, max_z));
ostringstream x_cmd;
x_cmd << " window_title 'Eigenmode " << i+1 << '/' << nev
<< " X, Lambda = " << eigenvalues[i] - shift << "'"
<< " valuerange -"<< max_r << ' ' << max_r;
if (i == 0)
{
x_cmd << " keys aa"
<< " window_geometry 0 0 400 350";
}
mode_x_sock << "parallel " << num_procs << " " << myid << "\n"
<< "solution\n" << pmesh << xComp << flush
<< x_cmd.str() << endl << flush;
MPI_Barrier(MPI_COMM_WORLD);
ostringstream y_cmd;
y_cmd << " window_title 'Eigenmode " << i+1 << '/' << nev
<< " Y, Lambda = " << eigenvalues[i] - shift << "'"
<< " valuerange -"<< max_r << ' ' << max_r;
if (i == 0)
{
y_cmd << " keys aa "
<< " window_geometry 403 0 400 350";
}
mode_y_sock << "parallel " << num_procs << " " << myid << "\n"
<< "solution\n" << pmesh << yComp << flush
<< y_cmd.str() << endl << flush;
MPI_Barrier(MPI_COMM_WORLD);
ostringstream z_cmd;
z_cmd << " window_title 'Eigenmode " << i+1 << '/' << nev
<< " Z, Lambda = " << eigenvalues[i] - shift << "'"
<< " valuerange -"<< max_r << ' ' << max_r;
if (i == 0)
{
z_cmd << " keys aa "
<< " window_geometry 806 0 400 350";
}
mode_z_sock << "parallel " << num_procs << " " << myid << "\n"
<< "solution\n" << pmesh << zComp << flush
<< z_cmd.str() << endl << flush;
MPI_Barrier(MPI_COMM_WORLD);
VectorGridFunctionCoefficient dmodeCoef(&dx);
InnerProductCoefficient dyCoef(yVecCoef, dmodeCoef);
InnerProductCoefficient dzCoef(zVecCoef, dmodeCoef);
dyComp.ProjectCoefficient(dyCoef);
dzComp.ProjectCoefficient(dzCoef);
real_t min_d = max_r / (bbMax[0] - bbMin[0]);
max_y = GetScalarMax(dyComp);
max_z = GetScalarMax(dzComp);
max_r = std::max(std::max(max_y, max_z), min_d);
ostringstream dy_cmd;
dy_cmd << " window_title 'Curl Eigenmode "
<< i+1 << '/' << nev
<< " Y, Lambda = " << eigenvalues[i] - shift << "'"
<< "valuerange -"<< max_r << ' ' << max_r;
if (i == 0)
{
dy_cmd << " keys aa"
<< " window_geometry 403 375 400 350";
}
mode_dy_sock << "parallel " << num_procs << " " << myid << "\n"
<< "solution\n" << pmesh << dyComp << flush
<< dy_cmd.str() << endl << flush;
MPI_Barrier(MPI_COMM_WORLD);
ostringstream dz_cmd;
dz_cmd << " window_title 'Curl Eigenmode "
<< i+1 << '/' << nev
<< " Z, Lambda = " << eigenvalues[i] - shift << "'"
<< "valuerange -"<< max_r << ' ' << max_r;
if (i == 0)
{
dz_cmd << " keys aa"
<< " window_geometry 806 375 400 350";
}
mode_dz_sock << "parallel " << num_procs << " " << myid << "\n"
<< "solution\n" << pmesh << dzComp << flush
<< dz_cmd.str() << endl << flush;
MPI_Barrier(MPI_COMM_WORLD);
}
char c;
if (Mpi::Root())
{
cout << "press (q)uit or (c)ontinue --> " << flush;
cin >> c;
}
MPI_Bcast(&c, 1, MPI_CHAR, 0, MPI_COMM_WORLD);
if (c != 'c')
{
break;
}
}
mode_x_sock.close();
mode_y_sock.close();
mode_z_sock.close();
mode_dy_sock.close();
mode_dz_sock.close();
}
else if (dim == 2)
{
socketstream mode_xy_sock(vishost, visport);
socketstream mode_z_sock(vishost, visport);
socketstream mode_dxy_sock(vishost, visport);
socketstream mode_dz_sock(vishost, visport);
mode_xy_sock.precision(8);
mode_z_sock.precision(8);
mode_dxy_sock.precision(8);
mode_dz_sock.precision(8);
DenseMatrix xyMat(2,3); xyMat = 0.0;
xyMat(0,0) = 1.0; xyMat(1,1) = 1.0;
MatrixConstantCoefficient xyMatCoef(xyMat);
Vector zVec(3); zVec = 0.0; zVec(2) = 1;
VectorConstantCoefficient zVecCoef(zVec);
H1_FECollection fec_h1(order, dim);
ND_FECollection fec_nd_xy(order, dim);
RT_FECollection fec_rt_xy(order-1, dim);
L2_FECollection fec_l2(order-1, dim);
ParFiniteElementSpace fes_h1(&pmesh, &fec_h1);
ParFiniteElementSpace fes_nd(&pmesh, &fec_nd_xy);
ParFiniteElementSpace fes_rt(&pmesh, &fec_rt_xy);
ParFiniteElementSpace fes_l2(&pmesh, &fec_l2);
ParGridFunction xyComp(&fes_nd);
ParGridFunction zComp(&fes_h1);
ParGridFunction dxyComp(&fes_rt);
ParGridFunction dzComp(&fes_l2);
for (int i=0; i<nev; i++)
{
if (Mpi::Root())
{
cout << "Eigenmode " << i+1 << '/' << nev
<< ", Lambda = " << eigenvalues[i] - shift << endl;
}
// convert eigenvector from HypreParVector to ParGridFunction
x = ame->GetEigenvector(i);
curl.Mult(x, dx);
{
VectorGridFunctionCoefficient modeCoef(&x);
MatrixVectorProductCoefficient xyCoef(xyMatCoef, modeCoef);
InnerProductCoefficient zCoef(zVecCoef, modeCoef);
xyComp.ProjectCoefficient(xyCoef);
zComp.ProjectCoefficient(zCoef);
real_t max_v = GetVectorMax(2, xyComp);
real_t max_s = GetScalarMax(zComp);
real_t max_r = std::max(max_v, max_s);
ostringstream xy_cmd;
xy_cmd << " window_title 'Eigenmode " << i+1 << '/' << nev
<< " XY, Lambda = " << eigenvalues[i] - shift << "'"
<< " valuerange 0.0 " << max_r;
if (i == 0)
{
xy_cmd << " keys aavvv"
<< " window_geometry 0 0 400 350";
}
mode_xy_sock << "parallel " << num_procs << " " << myid << "\n"
<< "solution\n" << pmesh << xyComp << flush
<< xy_cmd.str() << endl << flush;
MPI_Barrier(MPI_COMM_WORLD);
ostringstream z_cmd;
z_cmd << " window_title 'Eigenmode " << i+1 << '/' << nev
<< " Z, Lambda = " << eigenvalues[i] - shift << "'"
<< " valuerange -"<< max_r << ' ' << max_r;
if (i == 0)
{
z_cmd << " keys aa"
<< " window_geometry 403 0 400 350";
}
mode_z_sock << "parallel " << num_procs << " " << myid << "\n"
<< "solution\n" << pmesh << zComp << flush
<< z_cmd.str() << endl << flush;
MPI_Barrier(MPI_COMM_WORLD);
VectorGridFunctionCoefficient dmodeCoef(&dx);
MatrixVectorProductCoefficient dxyCoef(xyMatCoef, dmodeCoef);
InnerProductCoefficient dzCoef(zVecCoef, dmodeCoef);
dxyComp.ProjectCoefficient(dxyCoef);
dzComp.ProjectCoefficient(dzCoef);
real_t min_d = max_r / std::min(bbMax[0] - bbMin[0],
bbMax[1] - bbMin[1]);
max_v = GetVectorMax(2, dxyComp);
max_s = GetScalarMax(dzComp);
max_r = std::max(std::max(max_v, max_s), min_d);
ostringstream dxy_cmd;
dxy_cmd << " window_title 'Curl Eigenmode "
<< i+1 << '/' << nev
<< " XY, Lambda = " << eigenvalues[i] - shift << "'"
<< " valuerange 0.0 " << max_r << '\n';
if (i == 0)
{
dxy_cmd << " keys aavvv "
<< " window_geometry 0 375 400 350";
}
mode_dxy_sock << "parallel " << num_procs << " " << myid << "\n"
<< "solution\n" << pmesh << dxyComp << flush
<< dxy_cmd.str() << endl << flush;
MPI_Barrier(MPI_COMM_WORLD);
ostringstream dz_cmd;
dz_cmd << " window_title 'Curl Eigenmode "
<< i+1 << '/' << nev
<< " Z, Lambda = " << eigenvalues[i] - shift << "'"
<< " valuerange -" << max_r << ' ' << max_r;
if (i == 0)
{
dz_cmd << " keys aa"
<< " window_geometry 403 375 400 350";
}
mode_dz_sock << "parallel " << num_procs << " " << myid << "\n"
<< "solution\n" << pmesh << dzComp << flush
<< dz_cmd.str() << endl << flush;
MPI_Barrier(MPI_COMM_WORLD);
}
char c;
if (Mpi::Root())
{
cout << "press (q)uit or (c)ontinue --> " << flush;
cin >> c;
}
MPI_Bcast(&c, 1, MPI_CHAR, 0, MPI_COMM_WORLD);
if (c != 'c')
{
break;
}
}
mode_xy_sock.close();
mode_z_sock.close();
mode_dxy_sock.close();
mode_dz_sock.close();
}
else
{
socketstream mode_sock(vishost, visport);
socketstream mode_deriv_sock(vishost, visport);
mode_sock.precision(8);
mode_deriv_sock.precision(8);
for (int i=0; i<nev; i++)
{
if (Mpi::Root())
{
cout << "Eigenmode " << i+1 << '/' << nev
<< ", Lambda = " << eigenvalues[i] - shift << endl;
}
// convert eigenvector from HypreParVector to ParGridFunction
x = ame->GetEigenvector(i);
curl.Mult(x, dx);
mode_sock << "parallel " << num_procs << " " << myid << "\n"
<< "solution\n" << pmesh << x << flush
<< "window_title 'Eigenmode " << i+1 << '/' << nev
<< ", Lambda = " << eigenvalues[i] - shift
<< "'" << endl;
MPI_Barrier(MPI_COMM_WORLD);
mode_deriv_sock << "parallel " << num_procs << " " << myid << "\n"
<< "solution\n" << pmesh << dx << flush
<< "window_geometry 0 375 400 350 "
<< "window_title 'Curl Eigenmode "
<< i+1 << '/' << nev
<< ", Lambda = " << eigenvalues[i] - shift
<< "'" << endl;
MPI_Barrier(MPI_COMM_WORLD);
char c;
if (Mpi::Root())
{
cout << "press (q)uit or (c)ontinue --> " << flush;
cin >> c;
}
MPI_Bcast(&c, 1, MPI_CHAR, 0, MPI_COMM_WORLD);
if (c != 'c')
{
break;
}
}
mode_sock.close();
}
}
// 12. Free the used memory.
delete ame;
delete ams;
delete M;
delete A;
delete fec_nd;
delete fec_rt;
return 0;
}
real_t GetVectorMax(int vdim, const ParGridFunction &x)
{
Vector zeroVec(vdim); zeroVec = 0.0;
VectorConstantCoefficient zero(zeroVec);
real_t nrm = x.ComputeMaxError(zero);
return nrm;
}
real_t GetScalarMax(const ParGridFunction &x)
{
ConstantCoefficient zero(0.0);
real_t nrm = x.ComputeMaxError(zero);
return nrm;
}
|