1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
|
// MFEM Example 33 - Parallel Version
//
// Compile with: make ex33p
//
// Sample runs: mpirun -np 4 ex33p -m ../data/square-disc.mesh -alpha 0.33 -o 2
// mpirun -np 4 ex33p -m ../data/square-disc.mesh -alpha 4.5 -o 3
// mpirun -np 4 ex33p -m ../data/star.mesh -alpha 1.4 -o 3
// mpirun -np 4 ex33p -m ../data/star.mesh -alpha 0.99 -o 3
// mpirun -np 4 ex33p -m ../data/inline-quad.mesh -alpha 0.5 -o 3
// mpirun -np 4 ex33p -m ../data/amr-quad.mesh -alpha 1.5 -o 3
// mpirun -np 4 ex33p -m ../data/disc-nurbs.mesh -alpha 0.33 -o 3 -r 2
// mpirun -np 4 ex33p -m ../data/disc-nurbs.mesh -alpha 2.4 -o 3 -r 4
// mpirun -np 4 ex33p -m ../data/l-shape.mesh -alpha 0.33 -o 3 -r 4
// mpirun -np 4 ex33p -m ../data/l-shape.mesh -alpha 1.7 -o 3 -r 5
//
// Verification runs:
// mpirun -np 4 ex33p -m ../data/inline-segment.mesh -ver -alpha 1.7 -o 2 -r 2
// mpirun -np 4 ex33p -m ../data/inline-quad.mesh -ver -alpha 1.2 -o 2 -r 2
// mpirun -np 4 ex33p -m ../data/amr-quad.mesh -ver -alpha 2.6 -o 2 -r 2
// mpirun -np 4 ex33p -m ../data/inline-hex.mesh -ver -alpha 0.3 -o 2 -r 1
// Note: The manufactured solution used in this problem is
//
// u = ∏_{i=0}^{dim-1} sin(π x_i) ,
//
// regardless of the value of alpha.
//
// Description:
//
// In this example we solve the following fractional PDE with MFEM:
//
// ( - Δ )^α u = f in Ω, u = 0 on ∂Ω, 0 < α,
//
// To solve this FPDE, we apply the operator ( - Δ )^(-N), where the integer
// N is given by floor(α). By doing so, we obtain
//
// ( - Δ )^(α-N) u = ( - Δ )^(-N) f in Ω, u = 0 on ∂Ω, 0 < α.
//
// We first compute the right hand side by solving the integer order PDE
//
// ( - Δ )^N g = f in Ω, g = ( - Δ )^k g = 0 on ∂Ω, k = 1,..,N-1
//
// The remaining FPDE is then given by
//
// ( - Δ )^(α-N) u = g in Ω, u = 0 on ∂Ω.
//
// We rely on a rational approximation [2] of the normal linear operator
// A^{-α + N}, where A = - Δ (with associated homogeneous boundary conditions)
// and (a-N) in (0,1). We approximate the operator
//
// A^{-α+N} ≈ Σ_{i=0}^M c_i (A + d_i I)^{-1}, d_0 = 0, d_i > 0,
//
// where I is the L2-identity operator and the coefficients c_i and d_i
// are generated offline to a prescribed accuracy in a pre-processing step.
// We use the triple-A algorithm [1] to generate the rational approximation
// that this partial fractional expansion derives from. We then solve M+1
// independent integer-order PDEs,
//
// A u_i + d_i u_i = c_i g in Ω, u_i = 0 on ∂Ω, i=0,...,M,
//
// using MFEM and sum u_i to arrive at an approximate solution of the FPDE
//
// u ≈ Σ_{i=0}^M u_i.
//
// (If alpha is an integer, we stop after the first PDE was solved.)
//
// References:
//
// [1] Nakatsukasa, Y., Sète, O., & Trefethen, L. N. (2018). The AAA algorithm
// for rational approximation. SIAM Journal on Scientific Computing, 40(3),
// A1494-A1522.
//
// [2] Harizanov, S., Lazarov, R., Margenov, S., Marinov, P., & Pasciak, J.
// (2020). Analysis of numerical methods for spectral fractional elliptic
// equations based on the best uniform rational approximation. Journal of
// Computational Physics, 408, 109285.
//
#include "mfem.hpp"
#include <fstream>
#include <iostream>
#include <math.h>
#include <string>
#include "ex33.hpp"
using namespace std;
using namespace mfem;
int main(int argc, char *argv[])
{
#ifdef MFEM_USE_SINGLE
cout << "This example is not supported in single precision.\n\n";
return MFEM_SKIP_RETURN_VALUE;
#endif
// 0. Initialize MPI.
Mpi::Init(argc, argv);
int num_procs = Mpi::WorldSize();
int myid = Mpi::WorldRank();
Hypre::Init();
// 1. Parse command-line options.
const char *mesh_file = "../data/star.mesh";
int order = 1;
int num_refs = 3;
real_t alpha = 0.5;
bool visualization = true;
bool verification = false;
OptionsParser args(argc, argv);
args.AddOption(&mesh_file, "-m", "--mesh",
"Mesh file to use.");
args.AddOption(&order, "-o", "--order",
"Finite element order (polynomial degree) or -1 for"
" isoparametric space.");
args.AddOption(&num_refs, "-r", "--refs",
"Number of uniform refinements");
args.AddOption(&alpha, "-alpha", "--alpha",
"Fractional exponent");
args.AddOption(&visualization, "-vis", "--visualization", "-no-vis",
"--no-visualization",
"Enable or disable GLVis visualization.");
args.AddOption(&verification, "-ver", "--verification", "-no-ver",
"--no-verification",
"Use sinusoidal function (f) for manufactured "
"solution test.");
args.Parse();
if (!args.Good())
{
args.PrintUsage(cout);
return 1;
}
if (Mpi::Root())
{
args.PrintOptions(cout);
}
Array<real_t> coeffs, poles;
int progress_steps = 1;
// 2. Compute the rational expansion coefficients that define the
// integer-order PDEs.
const int power_of_laplace = floor(alpha);
real_t exponent_to_approximate = alpha - power_of_laplace;
bool integer_order = false;
// Check if alpha is an integer or not.
if (abs(exponent_to_approximate) > 1e-12)
{
if (Mpi::Root())
{
mfem::out << "Approximating the fractional exponent "
<< exponent_to_approximate
<< endl;
}
ComputePartialFractionApproximation(exponent_to_approximate, coeffs,
poles);
// If the example is build without LAPACK, the exponent_to_approximate
// might be modified by the function call above.
alpha = exponent_to_approximate + power_of_laplace;
}
else
{
integer_order = true;
if (Mpi::Root())
{
mfem::out << "Treating integer order PDE." << endl;
}
}
// 3. Read the mesh from the given mesh file.
Mesh mesh(mesh_file, 1, 1);
int dim = mesh.Dimension();
// 4. Refine the mesh to increase the resolution.
for (int i = 0; i < num_refs; i++)
{
mesh.UniformRefinement();
}
ParMesh pmesh(MPI_COMM_WORLD, mesh);
mesh.Clear();
// 5. Define a finite element space on the mesh.
H1_FECollection fec(order, dim);
ParFiniteElementSpace fespace(&pmesh, &fec);
HYPRE_BigInt size = fespace.GlobalTrueVSize();
if (Mpi::Root())
{
cout << "Number of degrees of freedom: "
<< size << endl;
}
// 6. Determine the list of true (i.e. conforming) essential boundary dofs.
Array<int> ess_tdof_list;
if (pmesh.bdr_attributes.Size())
{
Array<int> ess_bdr(pmesh.bdr_attributes.Max());
ess_bdr = 1;
fespace.GetEssentialTrueDofs(ess_bdr, ess_tdof_list);
}
// 7. Define diffusion coefficient, load, and solution GridFunction.
auto func = [&alpha](const Vector &x)
{
real_t val = 1.0;
for (int i=0; i<x.Size(); i++)
{
val *= sin(M_PI*x(i));
}
return pow(x.Size()*pow(M_PI,2), alpha) * val;
};
FunctionCoefficient f(func);
ConstantCoefficient one(1.0);
ParGridFunction u(&fespace);
ParGridFunction x(&fespace);
ParGridFunction g(&fespace);
u = 0.0;
x = 0.0;
g = 0.0;
// 8. Prepare for visualization.
char vishost[] = "localhost";
int visport = 19916;
// 9. Set up the linear form b(.) for integer-order PDE solves.
ParLinearForm b(&fespace);
if (verification)
{
// This statement is only relevant for the verification of the code. It
// uses a different f such that an manufactured solution is known and easy
// to compare with the numerical one. The FPDE becomes:
// (-Δ)^α u = (2\pi ^2)^α sin(\pi x) sin(\pi y) on [0,1]^2
// -> u(x,y) = sin(\pi x) sin(\pi y)
b.AddDomainIntegrator(new DomainLFIntegrator(f));
}
else
{
b.AddDomainIntegrator(new DomainLFIntegrator(one));
}
b.Assemble();
// ------------------------------------------------------------------------
// 10. Solve the PDE (-Δ)^N g = f, i.e. compute g = (-Δ)^{-1}^N f.
// ------------------------------------------------------------------------
if (power_of_laplace > 0)
{
// 10.1 Compute Stiffnes Matrix
ParBilinearForm k(&fespace);
k.AddDomainIntegrator(new DiffusionIntegrator(one));
k.Assemble();
// 10.2 Compute Mass Matrix
ParBilinearForm m(&fespace);
m.AddDomainIntegrator(new MassIntegrator(one));
m.Assemble();
HypreParMatrix mass;
Array<int> empty;
m.FormSystemMatrix(empty, mass);
// 10.3 Form the system of equations
Vector B, X;
OperatorPtr Op;
k.FormLinearSystem(ess_tdof_list, g, b, Op, X, B);
HypreBoomerAMG prec;
prec.SetPrintLevel(-1);
CGSolver cg(MPI_COMM_WORLD);
cg.SetRelTol(1e-12);
cg.SetMaxIter(2000);
cg.SetPrintLevel(3);
cg.SetPreconditioner(prec);
cg.SetOperator(*Op);
if (Mpi::Root())
{
mfem::out << "\nComputing (-Δ) ^ -" << power_of_laplace
<< " ( f ) " << endl;
}
for (int i = 0; i < power_of_laplace; i++)
{
// 10.4 Solve the linear system Op X = B (N times).
cg.Mult(B, X);
// 10.5 Visualize the solution g of -Δ ^ N g = f in the last step
if (i == power_of_laplace - 1)
{
// Needed for visualization and solution verification.
k.RecoverFEMSolution(X, b, g);
if (integer_order && verification)
{
// For an integer order PDE, g is also our solution u.
u+=g;
}
if (visualization)
{
socketstream fout;
ostringstream oss_f;
fout.open(vishost, visport);
fout.precision(8);
oss_f.str(""); oss_f.clear();
oss_f << "Step " << progress_steps++ << ": Solution of PDE -Δ ^ "
<< power_of_laplace
<< " g = f";
fout << "parallel " << num_procs << " " << myid << "\n"
<< "solution\n" << pmesh << g
<< "window_title '" << oss_f.str() << "'" << flush;
}
}
// 10.6 Prepare for next iteration (primal / dual space)
mass.Mult(X, B);
X.SetSubVectorComplement(ess_tdof_list,0.0);
}
// 10.7 Extract solution for the next step. The b now corresponds to the
// function g in the PDE.
const SparseMatrix* rm = fespace.GetRestrictionMatrix();
rm->MultTranspose(B, b);
}
// ------------------------------------------------------------------------
// 11. Solve the fractional PDE by solving M integer order PDEs and adding
// up the solutions.
// ------------------------------------------------------------------------
if (!integer_order)
{
// Setup visualization.
socketstream xout, uout;
ostringstream oss_x, oss_u;
if (visualization)
{
xout.open(vishost, visport);
xout.precision(8);
uout.open(vishost, visport);
uout.precision(8);
}
// Iterate over all expansion coefficient that contribute to the
// solution.
for (int i = 0; i < coeffs.Size(); i++)
{
if (Mpi::Root())
{
mfem::out << "\nSolving PDE -Δ u + " << -poles[i]
<< " u = " << coeffs[i] << " g " << endl;
}
// 11.1 Reset GridFunction for integer-order PDE solve.
x = 0.0;
// 11.2 Set up the bilinear form a(.,.) for integer-order PDE solve.
ParBilinearForm a(&fespace);
a.AddDomainIntegrator(new DiffusionIntegrator(one));
ConstantCoefficient d_i(-poles[i]);
a.AddDomainIntegrator(new MassIntegrator(d_i));
a.Assemble();
// 11.3 Assemble the bilinear form and the corresponding linear system.
OperatorPtr A;
Vector B, X;
a.FormLinearSystem(ess_tdof_list, x, b, A, X, B);
// 11.4 Solve the linear system A X = B.
HypreBoomerAMG prec;
prec.SetPrintLevel(-1);
CGSolver cg(MPI_COMM_WORLD);
cg.SetRelTol(1e-12);
cg.SetMaxIter(2000);
cg.SetPrintLevel(3);
cg.SetPreconditioner(prec);
cg.SetOperator(*A);
cg.Mult(B, X);
// 11.5 Recover the solution as a finite element grid function.
a.RecoverFEMSolution(X, b, x);
// 11.6 Accumulate integer-order PDE solutions.
x *= coeffs[i];
u += x;
// 11.7 Send fractional PDE solution to a GLVis server.
if (visualization)
{
oss_x.str(""); oss_x.clear();
oss_x << "Step " << progress_steps
<< ": Solution of PDE -Δ u + " << -poles[i]
<< " u = " << coeffs[i] << " g";
xout << "parallel " << num_procs << " " << myid << "\n"
<< "solution\n" << pmesh << x
<< "window_title '" << oss_x.str() << "'" << flush;
oss_u.str(""); oss_u.clear();
oss_u << "Step " << progress_steps + 1
<< ": Solution of fractional PDE (-Δ)^" << alpha
<< " u = f";
uout << "parallel " << num_procs << " " << myid << "\n"
<< "solution\n" << pmesh << u
<< "window_title '" << oss_u.str() << "'"
<< flush;
}
}
}
// ------------------------------------------------------------------------
// 12. (optional) Verify the solution.
// ------------------------------------------------------------------------
if (verification)
{
auto solution = [] (const Vector &x)
{
real_t val = 1.0;
for (int i=0; i<x.Size(); i++)
{
val *= sin(M_PI*x(i));
}
return val;
};
FunctionCoefficient sol(solution);
real_t l2_error = u.ComputeL2Error(sol);
if (Mpi::Root())
{
string manufactured_solution,expected_mesh;
switch (dim)
{
case 1:
manufactured_solution = "sin(π x)";
expected_mesh = "inline_segment.mesh";
break;
case 2:
manufactured_solution = "sin(π x) sin(π y)";
expected_mesh = "inline_quad.mesh";
break;
default:
manufactured_solution = "sin(π x) sin(π y) sin(π z)";
expected_mesh = "inline_hex.mesh";
break;
}
mfem::out << "\n" << string(80,'=')
<< "\n\nSolution Verification in "<< dim << "D \n\n"
<< "Manufactured solution : " << manufactured_solution << "\n"
<< "Expected mesh : " << expected_mesh <<"\n"
<< "Your mesh : " << mesh_file << "\n"
<< "L2 error : " << l2_error << "\n\n"
<< string(80,'=') << endl;
}
}
return 0;
}
|