1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
|
// MFEM Example 35 - Parallel Version
//
// Compile with: make ex35p
//
// Sample runs: mpirun -np 4 ex35p -p 0 -o 2
// mpirun -np 4 ex35p -p 0 -o 2 -pbc '22 23 24' -em 0
// mpirun -np 4 ex35p -p 1 -o 1 -rp 2
// mpirun -np 4 ex35p -p 1 -o 2
// mpirun -np 4 ex35p -p 2 -o 1 -rp 2 -c 15
//
// Device sample runs:
//
// Description: This example code demonstrates the use of MFEM to define and
// solve simple complex-valued linear systems. It implements three
// variants of a damped harmonic oscillator:
//
// 1) A scalar H1 field
// -Div(a Grad u) - omega^2 b u + i omega c u = 0
//
// 2) A vector H(Curl) field
// Curl(a Curl u) - omega^2 b u + i omega c u = 0
//
// 3) A vector H(Div) field
// -Grad(a Div u) - omega^2 b u + i omega c u = 0
//
// In each case the field is driven by a forced oscillation, with
// angular frequency omega, imposed at the boundary or a portion
// of the boundary. The spatial variation of the boundary
// condition is computed as an eigenmode of an appropriate
// operator defined on a portion of the boundary i.e. a port
// boundary condition.
//
// In electromagnetics the coefficients are typically named the
// permeability, mu = 1/a, permittivity, epsilon = b, and
// conductivity, sigma = c. The user can specify these constants
// using either set of names.
//
// This example demonstrates how to transfer fields computed on a
// boundary generated SubMesh to the full mesh and apply them as
// boundary conditions. The default mesh and corresponding
// boundary attributes were chosen to verify proper behavior on
// both triangular and quadrilateral faces of tetrahedral,
// wedge-shaped, and hexahedral elements.
//
// The example also demonstrates how to display a time-varying
// solution as a sequence of fields sent to a single GLVis socket.
//
// We recommend viewing examples 11, 13, and 22 before viewing
// this example.
#include "mfem.hpp"
#include <fstream>
#include <iostream>
using namespace std;
using namespace mfem;
static real_t mu_ = 1.0;
static real_t epsilon_ = 1.0;
static real_t sigma_ = 2.0;
void SetPortBC(int prob, int dim, int mode, ParGridFunction &port_bc);
int main(int argc, char *argv[])
{
// 1. Initialize MPI and HYPRE.
Mpi::Init(argc, argv);
int num_procs = Mpi::WorldSize();
int myid = Mpi::WorldRank();
Hypre::Init();
// 2. Parse command-line options.
const char *mesh_file = "../data/fichera-mixed.mesh";
int ser_ref_levels = 1;
int par_ref_levels = 1;
int order = 1;
Array<int> port_bc_attr;
int prob = 0;
int mode = 1;
real_t freq = -1.0;
real_t omega = 2.0 * M_PI;
real_t a_coef = 0.0;
bool herm_conv = true;
bool slu_solver = false;
bool visualization = 1;
bool mixed = true;
bool pa = false;
const char *device_config = "cpu";
OptionsParser args(argc, argv);
args.AddOption(&mesh_file, "-m", "--mesh",
"Mesh file to use.");
args.AddOption(&ser_ref_levels, "-rs", "--refine-serial",
"Number of times to refine the mesh uniformly in serial.");
args.AddOption(&par_ref_levels, "-rp", "--refine-parallel",
"Number of times to refine the mesh uniformly in parallel.");
args.AddOption(&order, "-o", "--order",
"Finite element order (polynomial degree).");
args.AddOption(&prob, "-p", "--problem-type",
"Choose between 0: H_1, 1: H(Curl), or 2: H(Div) "
"damped harmonic oscillator.");
args.AddOption(&mode, "-em", "--eigenmode",
"Choose the index of the port eigenmode.");
args.AddOption(&a_coef, "-a", "--stiffness-coef",
"Stiffness coefficient (spring constant or 1/mu).");
args.AddOption(&epsilon_, "-b", "--mass-coef",
"Mass coefficient (or epsilon).");
args.AddOption(&sigma_, "-c", "--damping-coef",
"Damping coefficient (or sigma).");
args.AddOption(&mu_, "-mu", "--permeability",
"Permeability of free space (or 1/(spring constant)).");
args.AddOption(&epsilon_, "-eps", "--permittivity",
"Permittivity of free space (or mass constant).");
args.AddOption(&sigma_, "-sigma", "--conductivity",
"Conductivity (or damping constant).");
args.AddOption(&freq, "-f", "--frequency",
"Frequency (in Hz).");
args.AddOption(&port_bc_attr, "-pbc", "--port-bc-attr",
"Attributes of port boundary condition");
args.AddOption(&herm_conv, "-herm", "--hermitian", "-no-herm",
"--no-hermitian", "Use convention for Hermitian operators.");
#ifdef MFEM_USE_SUPERLU
args.AddOption(&slu_solver, "-slu", "--superlu", "-no-slu",
"--no-superlu", "Use the SuperLU Solver.");
#endif
args.AddOption(&visualization, "-vis", "--visualization", "-no-vis",
"--no-visualization",
"Enable or disable GLVis visualization.");
args.AddOption(&mixed, "-mixed", "--mixed-mesh", "-hex",
"--hex-mesh", "Mixed mesh of hexahedral mesh.");
args.AddOption(&pa, "-pa", "--partial-assembly", "-no-pa",
"--no-partial-assembly", "Enable Partial Assembly.");
args.AddOption(&device_config, "-d", "--device",
"Device configuration string, see Device::Configure().");
args.Parse();
if (!args.Good())
{
if (myid == 0)
{
args.PrintUsage(cout);
}
return 1;
}
if (!mixed || pa)
{
mesh_file = "../data/fichera.mesh";
}
if ( a_coef != 0.0 )
{
mu_ = 1.0 / a_coef;
}
if ( freq > 0.0 )
{
omega = 2.0 * M_PI * freq;
}
if (port_bc_attr.Size() == 0 &&
(strcmp(mesh_file, "../data/fichera-mixed.mesh") == 0 ||
strcmp(mesh_file, "../data/fichera.mesh") == 0))
{
port_bc_attr.SetSize(4);
port_bc_attr[0] = 7;
port_bc_attr[1] = 8;
port_bc_attr[2] = 11;
port_bc_attr[3] = 12;
}
if (myid == 0)
{
args.PrintOptions(cout);
}
MFEM_VERIFY(prob >= 0 && prob <=2,
"Unrecognized problem type: " << prob);
ComplexOperator::Convention conv =
herm_conv ? ComplexOperator::HERMITIAN : ComplexOperator::BLOCK_SYMMETRIC;
// 3. Enable hardware devices such as GPUs, and programming models such as
// CUDA, OCCA, RAJA and OpenMP based on command line options.
Device device(device_config);
if (myid == 0) { device.Print(); }
// 4. Read the (serial) mesh from the given mesh file on all processors. We
// can handle triangular, quadrilateral, tetrahedral, hexahedral, surface
// and volume meshes with the same code.
Mesh *mesh = new Mesh(mesh_file, 1, 1);
int dim = mesh->Dimension();
// 5. Refine the serial mesh on all processors to increase the resolution.
for (int l = 0; l < ser_ref_levels; l++)
{
mesh->UniformRefinement();
}
// 6a. Define a parallel mesh by a partitioning of the serial mesh. Refine
// this mesh further in parallel to increase the resolution. Once the
// parallel mesh is defined, the serial mesh can be deleted.
ParMesh pmesh(MPI_COMM_WORLD, *mesh);
delete mesh;
for (int l = 0; l < par_ref_levels; l++)
{
pmesh.UniformRefinement();
}
// 6b. Extract a submesh covering a portion of the boundary
ParSubMesh pmesh_port(ParSubMesh::CreateFromBoundary(pmesh, port_bc_attr));
// 7a. Define a parallel finite element space on the parallel mesh. Here we
// use continuous Lagrange, Nedelec, or Raviart-Thomas finite elements
// of the specified order.
if (dim == 1 && prob != 0 )
{
if (myid == 0)
{
cout << "Switching to problem type 0, H1 basis functions, "
<< "for 1 dimensional mesh." << endl;
}
prob = 0;
}
FiniteElementCollection *fec = NULL;
switch (prob)
{
case 0: fec = new H1_FECollection(order, dim); break;
case 1: fec = new ND_FECollection(order, dim); break;
case 2: fec = new RT_FECollection(order - 1, dim); break;
default: break; // This should be unreachable
}
ParFiniteElementSpace fespace(&pmesh, fec);
HYPRE_BigInt size = fespace.GlobalTrueVSize();
if (myid == 0)
{
cout << "Number of finite element unknowns: " << size << endl;
}
// 7b. Define a parallel finite element space on the sub-mesh. Here we
// use continuous Lagrange, Nedelec, or L2 finite elements of
// the specified order.
FiniteElementCollection *fec_port = NULL;
switch (prob)
{
case 0: fec_port = new H1_FECollection(order, dim-1); break;
case 1:
if (dim == 3)
{
fec_port = new ND_FECollection(order, dim-1);
}
else
{
fec_port = new L2_FECollection(order - 1, dim-1,
BasisType::GaussLegendre,
FiniteElement::INTEGRAL);
}
break;
case 2: fec_port = new L2_FECollection(order - 1, dim-1,
BasisType::GaussLegendre,
FiniteElement::INTEGRAL); break;
default: break; // This should be unreachable
}
ParFiniteElementSpace fespace_port(&pmesh_port, fec_port);
HYPRE_BigInt size_port = fespace_port.GlobalTrueVSize();
if (myid == 0)
{
cout << "Number of finite element port BC unknowns: " << size_port
<< endl;
}
// 8a. Define a parallel grid function on the SubMesh which will contain
// the field to be applied as a port boundary condition.
ParGridFunction port_bc(&fespace_port);
port_bc = 0.0;
SetPortBC(prob, dim, mode, port_bc);
// 8b. Save the SubMesh and associated port boundary condition in parallel.
// This output can be viewed later using GLVis:
// "glvis -np <np> -m port_mesh -g port_mode"
{
ostringstream mesh_name, port_name;
mesh_name << "port_mesh." << setfill('0') << setw(6) << myid;
port_name << "port_mode." << setfill('0') << setw(6) << myid;
ofstream mesh_ofs(mesh_name.str().c_str());
mesh_ofs.precision(8);
pmesh_port.Print(mesh_ofs);
ofstream port_ofs(port_name.str().c_str());
port_ofs.precision(8);
port_bc.Save(port_ofs);
}
// 8c. Send the port bc, computed on the SubMesh, to a GLVis server.
if (visualization && dim == 3)
{
char vishost[] = "localhost";
int visport = 19916;
socketstream port_sock(vishost, visport);
port_sock << "parallel " << num_procs << " " << myid << "\n";
port_sock.precision(8);
port_sock << "solution\n" << pmesh_port << port_bc
<< "window_title 'Port BC'"
<< "window_geometry 0 0 400 350" << flush;
}
// 9. Determine the list of true (i.e. parallel conforming) essential
// boundary dofs. In this example, the boundary conditions are defined
// using an eigenmode of the appropriate type computed on the SubMesh.
Array<int> ess_tdof_list;
Array<int> ess_bdr;
if (pmesh.bdr_attributes.Size())
{
ess_bdr.SetSize(pmesh.bdr_attributes.Max());
ess_bdr = 1;
fespace.GetEssentialTrueDofs(ess_bdr, ess_tdof_list);
}
// 10. Set up the parallel linear form b(.) which corresponds to the
// right-hand side of the FEM linear system.
ParComplexLinearForm b(&fespace, conv);
b.Vector::operator=(0.0);
// 11a. Define the solution vector u as a parallel complex finite element
// grid function corresponding to fespace. Initialize u to equal zero.
ParComplexGridFunction u(&fespace);
u = 0.0;
pmesh_port.Transfer(port_bc, u.real());
// 11b. Send the transferred port bc field to a GLVis server.
{
ParGridFunction full_bc(&fespace);
ParTransferMap port_to_full(port_bc, full_bc);
full_bc = 0.0;
port_to_full.Transfer(port_bc, full_bc);
if (visualization)
{
char vishost[] = "localhost";
int visport = 19916;
socketstream full_sock(vishost, visport);
full_sock << "parallel " << num_procs << " " << myid << "\n";
full_sock.precision(8);
full_sock << "solution\n" << pmesh << full_bc
<< "window_title 'Transferred BC'"
<< "window_geometry 400 0 400 350"<< flush;
}
}
// 12. Set up the parallel sesquilinear form a(.,.) on the finite element
// space corresponding to the damped harmonic oscillator operator of the
// appropriate type:
//
// 0) A scalar H1 field
// -Div(a Grad) - omega^2 b + i omega c
//
// 1) A vector H(Curl) field
// Curl(a Curl) - omega^2 b + i omega c
//
// 2) A vector H(Div) field
// -Grad(a Div) - omega^2 b + i omega c
//
ConstantCoefficient stiffnessCoef(1.0/mu_);
ConstantCoefficient massCoef(-omega * omega * epsilon_);
ConstantCoefficient lossCoef(omega * sigma_);
ConstantCoefficient negMassCoef(omega * omega * epsilon_);
ParSesquilinearForm a(&fespace, conv);
if (pa) { a.SetAssemblyLevel(AssemblyLevel::PARTIAL); }
switch (prob)
{
case 0:
a.AddDomainIntegrator(new DiffusionIntegrator(stiffnessCoef),
NULL);
a.AddDomainIntegrator(new MassIntegrator(massCoef),
new MassIntegrator(lossCoef));
break;
case 1:
a.AddDomainIntegrator(new CurlCurlIntegrator(stiffnessCoef),
NULL);
a.AddDomainIntegrator(new VectorFEMassIntegrator(massCoef),
new VectorFEMassIntegrator(lossCoef));
break;
case 2:
a.AddDomainIntegrator(new DivDivIntegrator(stiffnessCoef),
NULL);
a.AddDomainIntegrator(new VectorFEMassIntegrator(massCoef),
new VectorFEMassIntegrator(lossCoef));
break;
default: break; // This should be unreachable
}
// 13. Assemble the parallel bilinear form and the corresponding linear
// system, applying any necessary transformations such as: parallel
// assembly, eliminating boundary conditions, applying conforming
// constraints for non-conforming AMR, etc.
a.Assemble();
OperatorHandle A;
Vector B, U;
a.FormLinearSystem(ess_tdof_list, u, b, A, U, B);
if (myid == 0)
{
cout << "Size of linear system: "
<< 2 * size << endl << endl;
}
if (!slu_solver)
{
// 14a. Set up the parallel bilinear form for the preconditioner
// corresponding to the appropriate operator
//
// 0) A scalar H1 field
// -Div(a Grad) - omega^2 b + i omega c
//
// 1) A vector H(Curl) field
// Curl(a Curl) + omega^2 b + i omega c
//
// 2) A vector H(Div) field
// -Grad(a Div) - omega^2 b + i omega c
ParBilinearForm pcOp(&fespace);
if (pa) { pcOp.SetAssemblyLevel(AssemblyLevel::PARTIAL); }
switch (prob)
{
case 0:
pcOp.AddDomainIntegrator(new DiffusionIntegrator(stiffnessCoef));
pcOp.AddDomainIntegrator(new MassIntegrator(massCoef));
pcOp.AddDomainIntegrator(new MassIntegrator(lossCoef));
break;
case 1:
pcOp.AddDomainIntegrator(new CurlCurlIntegrator(stiffnessCoef));
pcOp.AddDomainIntegrator(new VectorFEMassIntegrator(negMassCoef));
pcOp.AddDomainIntegrator(new VectorFEMassIntegrator(lossCoef));
break;
case 2:
pcOp.AddDomainIntegrator(new DivDivIntegrator(stiffnessCoef));
pcOp.AddDomainIntegrator(new VectorFEMassIntegrator(massCoef));
pcOp.AddDomainIntegrator(new VectorFEMassIntegrator(lossCoef));
break;
default: break; // This should be unreachable
}
pcOp.Assemble();
// 14b. Define and apply a parallel FGMRES solver for AU=B with a block
// diagonal preconditioner based on the appropriate multigrid
// preconditioner from hypre.
Array<int> blockTrueOffsets;
blockTrueOffsets.SetSize(3);
blockTrueOffsets[0] = 0;
blockTrueOffsets[1] = A->Height() / 2;
blockTrueOffsets[2] = A->Height() / 2;
blockTrueOffsets.PartialSum();
BlockDiagonalPreconditioner BDP(blockTrueOffsets);
Operator * pc_r = NULL;
Operator * pc_i = NULL;
if (pa)
{
pc_r = new OperatorJacobiSmoother(pcOp, ess_tdof_list);
}
else
{
OperatorHandle PCOp;
pcOp.FormSystemMatrix(ess_tdof_list, PCOp);
switch (prob)
{
case 0:
pc_r = new HypreBoomerAMG(*PCOp.As<HypreParMatrix>());
break;
case 1:
pc_r = new HypreAMS(*PCOp.As<HypreParMatrix>(), &fespace);
break;
case 2:
if (dim == 2 )
{
pc_r = new HypreAMS(*PCOp.As<HypreParMatrix>(), &fespace);
}
else
{
pc_r = new HypreADS(*PCOp.As<HypreParMatrix>(), &fespace);
}
break;
default: break; // This should be unreachable
}
}
pc_i = new ScaledOperator(pc_r,
(conv == ComplexOperator::HERMITIAN) ?
-1.0:1.0);
BDP.SetDiagonalBlock(0, pc_r);
BDP.SetDiagonalBlock(1, pc_i);
BDP.owns_blocks = 1;
FGMRESSolver fgmres(MPI_COMM_WORLD);
fgmres.SetPreconditioner(BDP);
fgmres.SetOperator(*A.Ptr());
fgmres.SetRelTol(1e-6);
fgmres.SetMaxIter(1000);
fgmres.SetPrintLevel(1);
fgmres.Mult(B, U);
}
#ifdef MFEM_USE_SUPERLU
else
{
// 14. Solve using a direct solver
// Transform to monolithic HypreParMatrix
HypreParMatrix *A_hyp = A.As<ComplexHypreParMatrix>()->GetSystemMatrix();
SuperLURowLocMatrix SA(*A_hyp);
SuperLUSolver superlu(MPI_COMM_WORLD);
superlu.SetPrintStatistics(true);
superlu.SetSymmetricPattern(false);
superlu.SetColumnPermutation(superlu::PARMETIS);
superlu.SetOperator(SA);
superlu.Mult(B, U);
delete A_hyp;
}
#endif
// 15. Recover the parallel grid function corresponding to U. This is the
// local finite element solution on each processor.
a.RecoverFEMSolution(U, b, u);
// 16. Save the refined mesh and the solution in parallel. This output can be
// viewed later using GLVis: "glvis -np <np> -m mesh -g sol_r" or
// "glvis -np <np> -m mesh -g sol_i".
{
ostringstream mesh_name, sol_r_name, sol_i_name;
mesh_name << "mesh." << setfill('0') << setw(6) << myid;
sol_r_name << "sol_r." << setfill('0') << setw(6) << myid;
sol_i_name << "sol_i." << setfill('0') << setw(6) << myid;
ofstream mesh_ofs(mesh_name.str().c_str());
mesh_ofs.precision(8);
pmesh.Print(mesh_ofs);
ofstream sol_r_ofs(sol_r_name.str().c_str());
ofstream sol_i_ofs(sol_i_name.str().c_str());
sol_r_ofs.precision(8);
sol_i_ofs.precision(8);
u.real().Save(sol_r_ofs);
u.imag().Save(sol_i_ofs);
}
// 17. Send the solution by socket to a GLVis server.
if (visualization)
{
char vishost[] = "localhost";
int visport = 19916;
socketstream sol_sock_r(vishost, visport);
sol_sock_r << "parallel " << num_procs << " " << myid << "\n";
sol_sock_r.precision(8);
sol_sock_r << "solution\n" << pmesh << u.real()
<< "window_title 'Solution: Real Part'"
<< "window_geometry 800 0 400 350" << flush;
MPI_Barrier(MPI_COMM_WORLD);
socketstream sol_sock_i(vishost, visport);
sol_sock_i << "parallel " << num_procs << " " << myid << "\n";
sol_sock_i.precision(8);
sol_sock_i << "solution\n" << pmesh << u.imag()
<< "window_title 'Solution: Imaginary Part'"
<< "window_geometry 1200 0 400 350" << flush;
}
if (visualization)
{
ParGridFunction u_t(&fespace);
u_t = u.real();
char vishost[] = "localhost";
int visport = 19916;
socketstream sol_sock(vishost, visport);
sol_sock << "parallel " << num_procs << " " << myid << "\n";
sol_sock.precision(8);
sol_sock << "solution\n" << pmesh << u_t
<< "window_title 'Harmonic Solution (t = 0.0 T)'"
<< "window_geometry 0 432 600 450"
<< "pause\n" << flush;
if (myid == 0)
cout << "GLVis visualization paused."
<< " Press space (in the GLVis window) to resume it.\n";
int num_frames = 32;
int i = 0;
while (sol_sock)
{
real_t t = (real_t)(i % num_frames) / num_frames;
ostringstream oss;
oss << "Harmonic Solution (t = " << t << " T)";
add(cos( 2.0 * M_PI * t), u.real(),
sin(-2.0 * M_PI * t), u.imag(), u_t);
sol_sock << "parallel " << num_procs << " " << myid << "\n";
sol_sock << "solution\n" << pmesh << u_t
<< "window_title '" << oss.str() << "'" << flush;
i++;
}
}
// 18. Free the used memory.
delete fec_port;
delete fec;
return 0;
}
/**
Solves the eigenvalue problem -Div(Grad x) = lambda x with homogeneous
Dirichlet boundary conditions on the boundary of the domain. Returns mode
number "mode" (counting from zero) in the ParGridFunction "x".
*/
void ScalarWaveGuide(int mode, ParGridFunction &x)
{
int nev = std::max(mode + 2, 5);
int seed = 75;
ParFiniteElementSpace &fespace = *x.ParFESpace();
ParMesh &pmesh = *fespace.GetParMesh();
Array<int> ess_bdr;
if (pmesh.bdr_attributes.Size())
{
ess_bdr.SetSize(pmesh.bdr_attributes.Max());
ess_bdr = 1;
}
ParBilinearForm a(&fespace);
a.AddDomainIntegrator(new DiffusionIntegrator);
a.Assemble();
a.EliminateEssentialBCDiag(ess_bdr, 1.0);
a.Finalize();
ParBilinearForm m(&fespace);
m.AddDomainIntegrator(new MassIntegrator);
m.Assemble();
// shift the eigenvalue corresponding to eliminated dofs to a large value
m.EliminateEssentialBCDiag(ess_bdr, numeric_limits<real_t>::min());
m.Finalize();
HypreParMatrix *A = a.ParallelAssemble();
HypreParMatrix *M = m.ParallelAssemble();
HypreBoomerAMG amg(*A);
amg.SetPrintLevel(0);
HypreLOBPCG lobpcg(MPI_COMM_WORLD);
lobpcg.SetNumModes(nev);
lobpcg.SetRandomSeed(seed);
lobpcg.SetPreconditioner(amg);
lobpcg.SetMaxIter(200);
lobpcg.SetTol(1e-8);
lobpcg.SetPrecondUsageMode(1);
lobpcg.SetPrintLevel(1);
lobpcg.SetMassMatrix(*M);
lobpcg.SetOperator(*A);
lobpcg.Solve();
x = lobpcg.GetEigenvector(mode);
delete A;
delete M;
}
/**
Solves the eigenvalue problem -Curl(Curl x) = lambda x with homogeneous
Dirichlet boundary conditions, on the tangential component of x, on the
boundary of the domain. Returns mode number "mode" (counting from zero) in
the ParGridFunction "x".
*/
void VectorWaveGuide(int mode, ParGridFunction &x)
{
int nev = std::max(mode + 2, 5);
ParFiniteElementSpace &fespace = *x.ParFESpace();
ParMesh &pmesh = *fespace.GetParMesh();
Array<int> ess_bdr;
if (pmesh.bdr_attributes.Size())
{
ess_bdr.SetSize(pmesh.bdr_attributes.Max());
ess_bdr = 1;
}
ParBilinearForm a(&fespace);
a.AddDomainIntegrator(new CurlCurlIntegrator);
a.Assemble();
a.EliminateEssentialBCDiag(ess_bdr, 1.0);
a.Finalize();
ParBilinearForm m(&fespace);
m.AddDomainIntegrator(new VectorFEMassIntegrator);
m.Assemble();
// shift the eigenvalue corresponding to eliminated dofs to a large value
m.EliminateEssentialBCDiag(ess_bdr, numeric_limits<real_t>::min());
m.Finalize();
HypreParMatrix *A = a.ParallelAssemble();
HypreParMatrix *M = m.ParallelAssemble();
HypreAMS ams(*A,&fespace);
ams.SetPrintLevel(0);
ams.SetSingularProblem();
HypreAME ame(MPI_COMM_WORLD);
ame.SetNumModes(nev);
ame.SetPreconditioner(ams);
ame.SetMaxIter(100);
ame.SetTol(1e-8);
ame.SetPrintLevel(1);
ame.SetMassMatrix(*M);
ame.SetOperator(*A);
ame.Solve();
x = ame.GetEigenvector(mode);
delete A;
delete M;
}
/**
Solves the eigenvalue problem -Div(Grad x) = lambda x with homogeneous
Neumann boundary conditions on the boundary of the domain. Returns mode
number "mode" (counting from zero) in the ParGridFunction "x_l2". Note that
mode 0 is a constant field so higher mode numbers are often more
interesting. The eigenmode is solved using continuous H1 basis of the
appropriate order and then projected onto the L2 basis and returned.
*/
void PseudoScalarWaveGuide(int mode, ParGridFunction &x_l2)
{
int nev = std::max(mode + 2, 5);
int seed = 75;
ParFiniteElementSpace &fespace_l2 = *x_l2.ParFESpace();
ParMesh &pmesh = *fespace_l2.GetParMesh();
int order_l2 = fespace_l2.FEColl()->GetOrder();
H1_FECollection fec(order_l2+1, pmesh.Dimension());
ParFiniteElementSpace fespace(&pmesh, &fec);
ParGridFunction x(&fespace);
x = 0.0;
GridFunctionCoefficient xCoef(&x);
if (mode == 0)
{
x = 1.0;
x_l2.ProjectCoefficient(xCoef);
return;
}
ParBilinearForm a(&fespace);
a.AddDomainIntegrator(new DiffusionIntegrator);
a.AddDomainIntegrator(new MassIntegrator); // Shift eigenvalues by 1
a.Assemble();
a.Finalize();
ParBilinearForm m(&fespace);
m.AddDomainIntegrator(new MassIntegrator);
m.Assemble();
m.Finalize();
HypreParMatrix *A = a.ParallelAssemble();
HypreParMatrix *M = m.ParallelAssemble();
HypreBoomerAMG amg(*A);
amg.SetPrintLevel(0);
HypreLOBPCG lobpcg(MPI_COMM_WORLD);
lobpcg.SetNumModes(nev);
lobpcg.SetRandomSeed(seed);
lobpcg.SetPreconditioner(amg);
lobpcg.SetMaxIter(200);
lobpcg.SetTol(1e-8);
lobpcg.SetPrecondUsageMode(1);
lobpcg.SetPrintLevel(1);
lobpcg.SetMassMatrix(*M);
lobpcg.SetOperator(*A);
lobpcg.Solve();
x = lobpcg.GetEigenvector(mode);
x_l2.ProjectCoefficient(xCoef);
delete A;
delete M;
}
// Compute eigenmode "mode" of either a Dirichlet or Neumann Laplacian or of a
// Dirichlet curl curl operator based on the problem type and dimension of the
// domain.
void SetPortBC(int prob, int dim, int mode, ParGridFunction &port_bc)
{
switch (prob)
{
case 0:
ScalarWaveGuide(mode, port_bc);
break;
case 1:
if (dim == 3)
{
VectorWaveGuide(mode, port_bc);
}
else
{
PseudoScalarWaveGuide(mode, port_bc);
}
break;
case 2:
PseudoScalarWaveGuide(mode, port_bc);
break;
}
}
|