1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
|
// MFEM Example 38
//
// Compile with: make ex38
//
// Sample runs:
// (since all sample runs require LAPACK, the * symbol is used to exclude them
// from the automatically generated internal MFEM tests).
// * ex38
// * ex38 -i volumetric1d
// * ex38 -i surface2d
// * ex38 -i surface2d -o 4 -r 5
// * ex38 -i volumetric2d
// * ex38 -i volumetric2d -o 4 -r 5
// * ex38 -i surface3d
// * ex38 -i surface3d -o 4 -r 5
// * ex38 -i volumetric3d
// * ex38 -i volumetric3d -o 4 -r 5
//
// Description: This example code demonstrates the use of MFEM to integrate
// functions over implicit interfaces and subdomains bounded by
// implicit interfaces.
//
// The quadrature rules are constructed by means of moment-fitting.
// The interface is given by the zero isoline of a level-set
// function ϕ and the subdomain is given as the domain where ϕ>0
// holds. The algorithm for construction of the quadrature rules
// was introduced by Mueller, Kummer and Oberlack [1].
//
// This example also showcases how to set up integrators using the
// integration rules on implicit surfaces and subdomains.
//
// [1] Mueller, B., Kummer, F. and Oberlack, M. (2013) Highly accurate surface
// and volume integration on implicit domains by means of moment-fitting.
// Int. J. Numer. Meth. Engr. (96) 512-528. DOI:10.1002/nme.4569
#include "mfem.hpp"
#include <iostream>
using namespace std;
using namespace mfem;
/// @brief Integration rule the example should demonstrate
enum class IntegrationType { Volumetric1D, Surface2D, Volumetric2D,
Surface3D, Volumetric3D
};
IntegrationType itype;
/// @brief Level-set function defining the implicit interface
real_t lvlset(const Vector& X)
{
switch (itype)
{
case IntegrationType::Volumetric1D:
return .55 - X(0);
case IntegrationType::Surface2D:
return 1. - (pow(X(0), 2.) + pow(X(1), 2.));
case IntegrationType::Volumetric2D:
return 1. - (pow(X(0) / 1.5, 2.) + pow(X(1) / .75, 2.));
case IntegrationType::Surface3D:
return 1. - (pow(X(0), 2.) + pow(X(1), 2.) + pow(X(2), 2.));
case IntegrationType::Volumetric3D:
return 1. - (pow(X(0) / 1.5, 2.) + pow(X(1) / .75, 2.) + pow(X(2) / .5, 2.));
default:
return 1.;
}
}
/// @brief Function that should be integrated
real_t integrand(const Vector& X)
{
switch (itype)
{
case IntegrationType::Volumetric1D:
return 1.;
case IntegrationType::Surface2D:
return 3. * pow(X(0), 2.) - pow(X(1), 2.);
case IntegrationType::Volumetric2D:
return 1.;
case IntegrationType::Surface3D:
return 4. - 3. * pow(X(0), 2.) + 2. * pow(X(1), 2.) - pow(X(2), 2.);
case IntegrationType::Volumetric3D:
return 1.;
default:
return 0.;
}
}
/// @brief Analytic surface integral
real_t Surface()
{
switch (itype)
{
case IntegrationType::Volumetric1D:
return 1.;
case IntegrationType::Surface2D:
return 2. * M_PI;
case IntegrationType::Volumetric2D:
return 7.26633616541076;
case IntegrationType::Surface3D:
return 40. / 3. * M_PI;
case IntegrationType::Volumetric3D:
return 9.90182151329315;
default:
return 0.;
}
}
/// @brief Analytic volume integral over subdomain with positive level-set
real_t Volume()
{
switch (itype)
{
case IntegrationType::Volumetric1D:
return .55;
case IntegrationType::Surface2D:
return NAN;
case IntegrationType::Volumetric2D:
return 9. / 8. * M_PI;
case IntegrationType::Surface3D:
return NAN;
case IntegrationType::Volumetric3D:
return 3. / 4. * M_PI;
default:
return 0.;
}
}
#ifdef MFEM_USE_LAPACK
/**
@brief Class for surface IntegrationRule
This class demonstrates how IntegrationRules computed as CutIntegrationRules
can be saved to reduce the impact by computing them from scratch each time.
*/
class SIntegrationRule : public IntegrationRule
{
protected:
/// @brief Space Dimension of the IntegrationRule
int dim;
/// @brief Column-wise matrix of the quadtrature weights
DenseMatrix Weights;
/// @brief Column-wise matrix of the transformation weights of the normal
DenseMatrix SurfaceWeights;
public:
/**
@brief Constructor of SIntegrationRule
The surface integrationRules are computed and saved in the constructor.
@param [in] Order Order of the IntegrationRule
@param [in] LvlSet Level-set defining the implicit interface
@param [in] lsOrder Polynomial degree for approx of level-set function
@param [in] mesh Pointer to the mesh that is used
*/
SIntegrationRule(int Order, Coefficient& LvlSet, int lsOrder, Mesh* mesh)
{
dim = mesh->Dimension();
IsoparametricTransformation Tr;
MomentFittingIntRules MFIRs(Order, LvlSet, lsOrder);
mesh->GetElementTransformation(0, &Tr);
IntegrationRule ir;
MFIRs.GetSurfaceIntegrationRule(Tr, ir);
if (dim >1)
{
Weights.SetSize(ir.GetNPoints(), mesh->GetNE());
}
else
{
Weights.SetSize(2, mesh->GetNE());
}
SurfaceWeights.SetSize(ir.GetNPoints(), mesh->GetNE());
Vector w;
MFIRs.GetSurfaceWeights(Tr, ir, w);
SurfaceWeights.SetCol(0, w);
SetSize(ir.GetNPoints());
for (int ip = 0; ip < GetNPoints(); ip++)
{
IntPoint(ip).index = ip;
IntegrationPoint &intp = IntPoint(ip);
intp.x = ir.IntPoint(ip).x;
intp.y = ir.IntPoint(ip).y;
intp.z = ir.IntPoint(ip).z;
if (dim > 1)
{
Weights(ip, 0) = ir.IntPoint(ip).weight;
}
else
{
Weights(0, 0) = ir.IntPoint(ip).x;
Weights(1, 0) = ir.IntPoint(ip).weight;
}
}
for (int elem = 1; elem < mesh->GetNE(); elem++)
{
mesh->GetElementTransformation(elem, &Tr);
MFIRs.GetSurfaceIntegrationRule(Tr, ir);
MFIRs.GetSurfaceWeights(Tr, ir, w);
SurfaceWeights.SetCol(elem, w);
for (int ip = 0; ip < GetNPoints(); ip++)
{
if (dim > 1)
{
Weights(ip, elem) = ir.IntPoint(ip).weight;
}
else
{
Weights(0, elem) = ir.IntPoint(ip).x;
Weights(1, elem) = ir.IntPoint(ip).weight;
}
}
}
}
/**
@brief Set the weights for the given element and multiply them with the
transformation of the interface
*/
void SetElementinclSurfaceWeight(int Element)
{
if (dim == 1)
{
IntegrationPoint &intp = IntPoint(0);
intp.x = Weights(0, Element);
intp.weight = Weights(1, Element);
cout << intp.x << " " << Element << endl;
}
else
for (int ip = 0; ip < GetNPoints(); ip++)
{
IntegrationPoint &intp = IntPoint(ip);
intp.weight = Weights(ip, Element) * SurfaceWeights(ip, Element);
}
}
/// @brief Set the weights for the given element
void SetElement(int Element)
{
if (dim == 1)
{
IntegrationPoint &intp = IntPoint(0);
intp.x = Weights(0, Element);
intp.weight = Weights(1, Element);
}
else
for (int ip = 0; ip < GetNPoints(); ip++)
{
IntegrationPoint &intp = IntPoint(ip);
intp.weight = Weights(ip, Element);
}
}
/// @brief Destructor of SIntegrationRule
~SIntegrationRule() {}
};
/**
@brief Class for volume IntegrationRule
This class demonstrates how IntegrationRules computed as CutIntegrationRules
can be saved to reduce the impact by computing them from scratch each time.
*/
class CIntegrationRule : public IntegrationRule
{
protected:
/// @brief Space Dimension of the IntegrationRule
int dim;
/// @brief Column-wise matrix of the quadtrature weights
DenseMatrix Weights;
public:
/**
@brief Constructor of CIntegrationRule
The volume integrationRules are computed and saved in the constructor.
@param [in] Order Order of the IntegrationRule
@param [in] LvlSet Level-set defining the implicit interface
@param [in] lsOrder Polynomial degree for approx of level-set function
@param [in] mesh Pointer to the mesh that is used
*/
CIntegrationRule(int Order, Coefficient& LvlSet, int lsOrder, Mesh* mesh)
{
dim = mesh->Dimension();
IsoparametricTransformation Tr;
MomentFittingIntRules MFIRs(Order, LvlSet, lsOrder);
mesh->GetElementTransformation(0, &Tr);
IntegrationRule ir;
MFIRs.GetVolumeIntegrationRule(Tr, ir);
if (dim > 1)
{
Weights.SetSize(ir.GetNPoints(), mesh->GetNE());
}
else
{
Weights.SetSize(2 * ir.GetNPoints(), mesh->GetNE());
}
SetSize(ir.GetNPoints());
for (int ip = 0; ip < GetNPoints(); ip++)
{
IntPoint(ip).index = ip;
IntegrationPoint &intp = IntPoint(ip);
intp.x = ir.IntPoint(ip).x;
intp.y = ir.IntPoint(ip).y;
intp.z = ir.IntPoint(ip).z;
if (dim > 1)
{
Weights(ip, 0) = ir.IntPoint(ip).weight;
}
else
{
Weights(2 * ip, 0) = ir.IntPoint(ip).x;
Weights(2 * ip + 1, 0) = ir.IntPoint(ip).weight;
}
}
for (int elem = 1; elem < mesh->GetNE(); elem++)
{
mesh->GetElementTransformation(elem, &Tr);
MFIRs.GetVolumeIntegrationRule(Tr, ir);
for (int ip = 0; ip < GetNPoints(); ip++)
{
if (dim > 1)
{
Weights(ip, elem) = ir.IntPoint(ip).weight;
}
else
{
Weights(2 * ip, elem) = ir.IntPoint(ip).x;
Weights(2 * ip + 1, elem) = ir.IntPoint(ip).weight;
}
}
}
}
/// @brief Set the weights for the given element
void SetElement(int Element)
{
if (dim == 1)
for (int ip = 0; ip < GetNPoints(); ip++)
{
IntegrationPoint &intp = IntPoint(ip);
intp.x = Weights(2 * ip, Element);
intp.weight = Weights(2 * ip + 1, Element);
}
else
for (int ip = 0; ip < GetNPoints(); ip++)
{
IntegrationPoint &intp = IntPoint(ip);
intp.weight = Weights(ip, Element);
}
}
/// @brief Destructor of CIntegrationRule
~CIntegrationRule() {}
};
/**
@brief Class for surface linearform integrator
Integrator to demonstrate the use of the surface integration rule on an
implicit surface defined by a level-set.
*/
class SurfaceLFIntegrator : public LinearFormIntegrator
{
protected:
/// @brief vector to evaluate the basis functions
Vector shape;
/// @brief surface integration rule
SIntegrationRule* SIntRule;
/// @brief coefficient representing the level-set defining the interface
Coefficient &LevelSet;
/// @brief coefficient representing the integrand
Coefficient &Q;
public:
/**
@brief Constructor for the surface linear form integrator
Constructor for the surface linear form integrator to demonstrate the use
of the surface integration rule by means of moment-fitting.
@param [in] q coefficient representing the inegrand
@param [in] levelset level-set defining the implicit interfac
@param [in] ir surface integrtion rule to be used
*/
SurfaceLFIntegrator(Coefficient &q, Coefficient &levelset,
SIntegrationRule* ir)
: LinearFormIntegrator(), SIntRule(ir), LevelSet(levelset), Q(q) { }
/**
@brief Assembly of the element vector
Assemble the element vector of for the right hand side on the element given
by the FiniteElement and ElementTransformation.
@param [in] el finite Element the vector belongs to
@param [in] Tr transformation of finite element
@param [out] elvect vector containing the
*/
virtual void AssembleRHSElementVect(const FiniteElement &el,
ElementTransformation &Tr,
Vector &elvect) override
{
int dof = el.GetDof();
shape.SetSize(dof);
elvect.SetSize(dof);
elvect = 0.;
// Update the surface integration rule for the current element
SIntRule->SetElementinclSurfaceWeight(Tr.ElementNo);
for (int ip = 0; ip < SIntRule->GetNPoints(); ip++)
{
Tr.SetIntPoint((&(SIntRule->IntPoint(ip))));
real_t val = Tr.Weight() * Q.Eval(Tr, SIntRule->IntPoint(ip));
el.CalcShape(SIntRule->IntPoint(ip), shape);
add(elvect, SIntRule->IntPoint(ip).weight * val, shape, elvect);
}
}
};
/**
@brief Class for subdomain linearform integrator
Integrator to demonstrate the use of the subdomain integration rule within
an area defined by an implicit surface defined by a level-set.
*/
class SubdomainLFIntegrator : public LinearFormIntegrator
{
protected:
/// @brief vector to evaluate the basis functions
Vector shape;
/// @brief surface integration rule
CIntegrationRule* CIntRule;
/// @brief coefficient representing the level-set defining the interface
Coefficient &LevelSet;
/// @brief coefficient representing the integrand
Coefficient &Q;
public:
/**
@brief Constructor for the volumetric subdomain linear form integrator
Constructor for the subdomain linear form integrator to demonstrate the use
of the volumetric subdomain integration rule by means of moment-fitting.
@param [in] q coefficient representing the inegrand
@param [in] levelset level-set defining the implicit interfac
@param [in] ir subdomain integrtion rule to be used
*/
SubdomainLFIntegrator(Coefficient &q, Coefficient &levelset,
CIntegrationRule* ir)
: LinearFormIntegrator(), CIntRule(ir), LevelSet(levelset), Q(q) { }
/**
@brief Assembly of the element vector
Assemble the element vector of for the right hand side on the element given
by the FiniteElement and ElementTransformation.
@param [in] el finite Element the vector belongs to
@param [in] Tr transformation of finite element
@param [out] elvect vector containing the
*/
virtual void AssembleRHSElementVect(const FiniteElement &el,
ElementTransformation &Tr,
Vector &elvect) override
{
int dof = el.GetDof();
shape.SetSize(dof);
elvect.SetSize(dof);
elvect = 0.;
// Update the subdomain integration rule
CIntRule->SetElement(Tr.ElementNo);
for (int ip = 0; ip < CIntRule->GetNPoints(); ip++)
{
Tr.SetIntPoint((&(CIntRule->IntPoint(ip))));
real_t val = Tr.Weight()
* Q.Eval(Tr, CIntRule->IntPoint(ip));
el.CalcPhysShape(Tr, shape);
add(elvect, CIntRule->IntPoint(ip).weight * val, shape, elvect);
}
}
};
#endif // MFEM_USE_LAPACK
int main(int argc, char *argv[])
{
#ifndef MFEM_USE_LAPACK
cout << "MFEM must be built with LAPACK for this example." << endl;
return MFEM_SKIP_RETURN_VALUE;
#else
// 1. Parse he command-line options.
int ref_levels = 3;
int order = 2;
const char *inttype = "surface2d";
bool visualization = true;
itype = IntegrationType::Surface2D;
OptionsParser args(argc, argv);
args.AddOption(&order, "-o", "--order", "Order of quadrature rule");
args.AddOption(&ref_levels, "-r", "--refine", "Number of meh refinements");
args.AddOption(&inttype, "-i", "--integrationtype",
"IntegrationType to demonstrate");
args.AddOption(&visualization, "-vis", "--visualization", "-no-vis",
"--no-visualization",
"Enable or disable GLVis visualization.");
args.ParseCheck();
if (strcmp(inttype, "volumetric1d") == 0
|| strcmp(inttype, "Volumetric1D") == 0)
{
itype = IntegrationType::Volumetric1D;
}
else if (strcmp(inttype, "surface2d") == 0
|| strcmp(inttype, "Surface2D") == 0)
{
itype = IntegrationType::Surface2D;
}
else if (strcmp(inttype, "volumetric2d") == 0
|| strcmp(inttype, "Volumetric2D") == 0)
{
itype = IntegrationType::Volumetric2D;
}
else if (strcmp(inttype, "surface3d") == 0
|| strcmp(inttype, "Surface3d") == 0)
{
itype = IntegrationType::Surface3D;
}
else if (strcmp(inttype, "volumetric3d") == 0
|| strcmp(inttype, "Volumetric3d") == 0)
{
itype = IntegrationType::Volumetric3D;
}
// 2. Construct and refine the mesh.
Mesh *mesh;
if (itype == IntegrationType::Volumetric1D)
{
mesh = new Mesh("../data/inline-segment.mesh");
}
if (itype == IntegrationType::Surface2D
|| itype == IntegrationType::Volumetric2D)
{
mesh = new Mesh(2, 4, 1, 0, 2);
mesh->AddVertex(-1.6,-1.6);
mesh->AddVertex(1.6,-1.6);
mesh->AddVertex(1.6,1.6);
mesh->AddVertex(-1.6,1.6);
mesh->AddQuad(0,1,2,3);
mesh->FinalizeQuadMesh(1, 0, 1);
}
else if (itype == IntegrationType::Surface3D
|| itype == IntegrationType::Volumetric3D)
{
mesh = new Mesh(3, 8, 1, 0, 3);
mesh->AddVertex(-1.6,-1.6,-1.6);
mesh->AddVertex(1.6,-1.6,-1.6);
mesh->AddVertex(1.6,1.6,-1.6);
mesh->AddVertex(-1.6,1.6,-1.6);
mesh->AddVertex(-1.6,-1.6,1.6);
mesh->AddVertex(1.6,-1.6,1.6);
mesh->AddVertex(1.6,1.6,1.6);
mesh->AddVertex(-1.6,1.6,1.6);
mesh->AddHex(0,1,2,3,4,5,6,7);
mesh->FinalizeHexMesh(1, 0, 1);
}
for (int lev = 0; lev < ref_levels; lev++)
{
mesh->UniformRefinement();
}
// 3. Define the necessary finite element space on the mesh.
H1_FECollection fe_coll(1, mesh->Dimension());
FiniteElementSpace *fespace = new FiniteElementSpace(mesh, &fe_coll);
// 4. Construction Coefficients for the level set and the integrand.
FunctionCoefficient levelset(lvlset);
FunctionCoefficient u(integrand);
// 5. Define the necessary Integration rules on element 0.
IsoparametricTransformation Tr;
mesh->GetElementTransformation(0, &Tr);
SIntegrationRule* sir = new SIntegrationRule(order, levelset, 2, mesh);
CIntegrationRule* cir = NULL;
if (itype == IntegrationType::Volumetric1D
|| itype == IntegrationType::Volumetric2D
|| itype == IntegrationType::Volumetric3D)
{
cir = new CIntegrationRule(order, levelset, 2, mesh);
}
// 6. Define and assemble the linear forms on the finite element space.
LinearForm surface(fespace);
LinearForm volume(fespace);
surface.AddDomainIntegrator(new SurfaceLFIntegrator(u, levelset, sir));
surface.Assemble();
if (itype == IntegrationType::Volumetric1D
|| itype == IntegrationType::Volumetric2D
|| itype == IntegrationType::Volumetric3D)
{
volume.AddDomainIntegrator(new SubdomainLFIntegrator(u, levelset, cir));
volume.Assemble();
}
// 7. Print information, computed values and errors to the console.
int qorder = 0;
int nbasis = 2 * (order + 1) + (int)(order * (order + 1) / 2);
IntegrationRules irs(0, Quadrature1D::GaussLegendre);
IntegrationRule ir = irs.Get(Geometry::SQUARE, qorder);
for (; ir.GetNPoints() <= nbasis; qorder++)
{
ir = irs.Get(Geometry::SQUARE, qorder);
}
cout << "============================================" << endl;
cout << "Mesh size dx: ";
if (itype != IntegrationType::Volumetric1D)
{
cout << 3.2 / pow(2., (real_t)ref_levels) << endl;
}
else
{
cout << .25 / pow(2., (real_t)ref_levels) << endl;
}
if (itype == IntegrationType::Surface2D
|| itype == IntegrationType::Volumetric2D)
{
cout << "Number of div free basis functions: " << nbasis << endl;
cout << "Number of quadrature points: " << ir.GetNPoints() << endl;
}
cout << scientific << setprecision(2);
cout << "============================================" << endl;
cout << "Computed value of surface integral: " << surface.Sum() << endl;
cout << "True value of surface integral: " << Surface() << endl;
cout << "Absolute Error (Surface): ";
cout << abs(surface.Sum() - Surface()) << endl;
cout << "Relative Error (Surface): ";
cout << abs(surface.Sum() - Surface()) / Surface() << endl;
if (itype == IntegrationType::Volumetric1D
|| itype == IntegrationType::Volumetric2D
|| itype == IntegrationType::Volumetric3D)
{
cout << "--------------------------------------------" << endl;
cout << "Computed value of volume integral: " << volume.Sum() << endl;
cout << "True value of volume integral: " << Volume() << endl;
cout << "Absolute Error (Volume): ";
cout << abs(volume.Sum() - Volume()) << endl;
cout << "Relative Error (Volume): ";
cout << abs(volume.Sum() - Volume()) / Volume() << endl;
}
cout << "============================================" << endl;
// 8. Plot the level-set function on a high order finite element space.
if (visualization)
{
H1_FECollection fe_coll2(5, mesh->Dimension());
FiniteElementSpace fespace2(mesh, &fe_coll2);
FunctionCoefficient levelset_coeff(levelset);
GridFunction lgf(&fespace2);
lgf.ProjectCoefficient(levelset_coeff);
char vishost[] = "localhost";
int visport = 19916;
socketstream sol_sock(vishost, visport);
sol_sock.precision(8);
sol_sock << "solution\n" << *mesh << lgf << flush;
sol_sock << "keys pppppppppppppppppppppppppppcmmlRj\n";
sol_sock << "levellines " << 0. << " " << 0. << " " << 1 << "\n" << flush;
}
delete sir;
delete cir;
delete fespace;
delete mesh;
return EXIT_SUCCESS;
#endif //MFEM_USE_LAPACK
}
|