1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
|
// MFEM Example 3 - Parallel Version
//
// Compile with: make ex3p
//
// Sample runs: mpirun -np 4 ex3p -m ../data/star.mesh
// mpirun -np 4 ex3p -m ../data/square-disc.mesh -o 2
// mpirun -np 4 ex3p -m ../data/beam-tet.mesh
// mpirun -np 4 ex3p -m ../data/beam-tet.mesh -nc -o 2
// mpirun -np 4 ex3p -m ../data/beam-hex.mesh
// mpirun -np 4 ex3p -m ../data/beam-hex.mesh -o 2 -pa
// mpirun -np 4 ex3p -m ../data/escher.mesh
// mpirun -np 4 ex3p -m ../data/escher.mesh -o 2
// mpirun -np 4 ex3p -m ../data/fichera.mesh
// mpirun -np 4 ex3p -m ../data/fichera-q2.vtk
// mpirun -np 4 ex3p -m ../data/fichera-q3.mesh
// mpirun -np 4 ex3p -m ../data/square-disc-nurbs.mesh
// mpirun -np 4 ex3p -m ../data/beam-hex-nurbs.mesh
// mpirun -np 4 ex3p -m ../data/amr-quad.mesh -o 2
// mpirun -np 4 ex3p -m ../data/amr-hex.mesh
// mpirun -np 4 ex3p -m ../data/ref-prism.mesh -o 1
// mpirun -np 4 ex3p -m ../data/octahedron.mesh -o 1
// mpirun -np 4 ex3p -m ../data/star-surf.mesh -o 2
// mpirun -np 4 ex3p -m ../data/mobius-strip.mesh -o 2 -f 0.1
// mpirun -np 4 ex3p -m ../data/klein-bottle.mesh -o 2 -f 0.1
//
// Device sample runs:
// mpirun -np 4 ex3p -m ../data/star.mesh -pa -d cuda
// mpirun -np 4 ex3p -m ../data/star.mesh -no-pa -d cuda
// mpirun -np 4 ex3p -m ../data/star.mesh -pa -d raja-cuda
// mpirun -np 4 ex3p -m ../data/star.mesh -pa -d raja-omp
// mpirun -np 4 ex3p -m ../data/beam-hex.mesh -pa -d cuda
//
// Description: This example code solves a simple electromagnetic diffusion
// problem corresponding to the second order definite Maxwell
// equation curl curl E + E = f with boundary condition
// E x n = <given tangential field>. Here, we use a given exact
// solution E and compute the corresponding r.h.s. f.
// We discretize with Nedelec finite elements in 2D or 3D.
//
// The example demonstrates the use of H(curl) finite element
// spaces with the curl-curl and the (vector finite element) mass
// bilinear form, as well as the computation of discretization
// error when the exact solution is known. Static condensation is
// also illustrated.
//
// We recommend viewing examples 1-2 before viewing this example.
#include "mfem.hpp"
#include <fstream>
#include <iostream>
using namespace std;
using namespace mfem;
// Exact solution, E, and r.h.s., f. See below for implementation.
void E_exact(const Vector &, Vector &);
void f_exact(const Vector &, Vector &);
real_t freq = 1.0, kappa;
int dim;
int main(int argc, char *argv[])
{
// 1. Initialize MPI and HYPRE.
Mpi::Init(argc, argv);
int num_procs = Mpi::WorldSize();
int myid = Mpi::WorldRank();
Hypre::Init();
// 2. Parse command-line options.
const char *mesh_file = "../data/beam-tet.mesh";
int order = 1;
bool static_cond = false;
bool pa = false;
bool nc = false;
const char *device_config = "cpu";
bool visualization = true;
#ifdef MFEM_USE_AMGX
bool useAmgX = false;
#endif
OptionsParser args(argc, argv);
args.AddOption(&mesh_file, "-m", "--mesh",
"Mesh file to use.");
args.AddOption(&order, "-o", "--order",
"Finite element order (polynomial degree).");
args.AddOption(&freq, "-f", "--frequency", "Set the frequency for the exact"
" solution.");
args.AddOption(&static_cond, "-sc", "--static-condensation", "-no-sc",
"--no-static-condensation", "Enable static condensation.");
args.AddOption(&pa, "-pa", "--partial-assembly", "-no-pa",
"--no-partial-assembly", "Enable Partial Assembly.");
args.AddOption(&nc, "-nc", "--non-conforming", "-c",
"--conforming",
"Mark the mesh as nonconforming before partitioning.");
args.AddOption(&device_config, "-d", "--device",
"Device configuration string, see Device::Configure().");
args.AddOption(&visualization, "-vis", "--visualization", "-no-vis",
"--no-visualization",
"Enable or disable GLVis visualization.");
#ifdef MFEM_USE_AMGX
args.AddOption(&useAmgX, "-amgx", "--useAmgX", "-no-amgx",
"--no-useAmgX",
"Enable or disable AmgX in MatrixFreeAMS.");
#endif
args.Parse();
if (!args.Good())
{
if (myid == 0)
{
args.PrintUsage(cout);
}
return 1;
}
if (myid == 0)
{
args.PrintOptions(cout);
}
kappa = freq * M_PI;
// 3. Enable hardware devices such as GPUs, and programming models such as
// CUDA, OCCA, RAJA and OpenMP based on command line options.
Device device(device_config);
if (myid == 0) { device.Print(); }
// 4. Read the (serial) mesh from the given mesh file on all processors. We
// can handle triangular, quadrilateral, tetrahedral, hexahedral, surface
// and volume meshes with the same code.
Mesh *mesh = new Mesh(mesh_file, 1, 1);
dim = mesh->Dimension();
int sdim = mesh->SpaceDimension();
if (nc)
{
// Can set to false to use conformal refinement for simplices.
mesh->EnsureNCMesh(true);
}
// 5. Refine the serial mesh on all processors to increase the resolution. In
// this example we do 'ref_levels' of uniform refinement. We choose
// 'ref_levels' to be the largest number that gives a final mesh with no
// more than 1,000 elements.
{
int ref_levels = (int)floor(log(1000./mesh->GetNE())/log(2.)/dim);
for (int l = 0; l < ref_levels; l++)
{
mesh->UniformRefinement();
}
}
// 6. Define a parallel mesh by a partitioning of the serial mesh. Refine
// this mesh further in parallel to increase the resolution. Once the
// parallel mesh is defined, the serial mesh can be deleted.
ParMesh *pmesh = new ParMesh(MPI_COMM_WORLD, *mesh);
delete mesh;
{
int par_ref_levels = 2;
for (int l = 0; l < par_ref_levels; l++)
{
pmesh->UniformRefinement();
}
}
// 7. Define a parallel finite element space on the parallel mesh. Here we
// use the Nedelec finite elements of the specified order.
FiniteElementCollection *fec = new ND_FECollection(order, dim);
ParFiniteElementSpace *fespace = new ParFiniteElementSpace(pmesh, fec);
HYPRE_BigInt size = fespace->GlobalTrueVSize();
if (myid == 0)
{
cout << "Number of finite element unknowns: " << size << endl;
}
// 8. Determine the list of true (i.e. parallel conforming) essential
// boundary dofs. In this example, the boundary conditions are defined
// by marking all the boundary attributes from the mesh as essential
// (Dirichlet) and converting them to a list of true dofs.
Array<int> ess_tdof_list;
Array<int> ess_bdr;
if (pmesh->bdr_attributes.Size())
{
ess_bdr.SetSize(pmesh->bdr_attributes.Max());
ess_bdr = 1;
fespace->GetEssentialTrueDofs(ess_bdr, ess_tdof_list);
}
// 9. Set up the parallel linear form b(.) which corresponds to the
// right-hand side of the FEM linear system, which in this case is
// (f,phi_i) where f is given by the function f_exact and phi_i are the
// basis functions in the finite element fespace.
VectorFunctionCoefficient f(sdim, f_exact);
ParLinearForm *b = new ParLinearForm(fespace);
b->AddDomainIntegrator(new VectorFEDomainLFIntegrator(f));
b->Assemble();
// 10. Define the solution vector x as a parallel finite element grid function
// corresponding to fespace. Initialize x by projecting the exact
// solution. Note that only values from the boundary edges will be used
// when eliminating the non-homogeneous boundary condition to modify the
// r.h.s. vector b.
ParGridFunction x(fespace);
VectorFunctionCoefficient E(sdim, E_exact);
x.ProjectCoefficient(E);
// 11. Set up the parallel bilinear form corresponding to the EM diffusion
// operator curl muinv curl + sigma I, by adding the curl-curl and the
// mass domain integrators.
Coefficient *muinv = new ConstantCoefficient(1.0);
Coefficient *sigma = new ConstantCoefficient(1.0);
ParBilinearForm *a = new ParBilinearForm(fespace);
if (pa) { a->SetAssemblyLevel(AssemblyLevel::PARTIAL); }
a->AddDomainIntegrator(new CurlCurlIntegrator(*muinv));
a->AddDomainIntegrator(new VectorFEMassIntegrator(*sigma));
// 12. Assemble the parallel bilinear form and the corresponding linear
// system, applying any necessary transformations such as: parallel
// assembly, eliminating boundary conditions, applying conforming
// constraints for non-conforming AMR, static condensation, etc.
if (static_cond) { a->EnableStaticCondensation(); }
a->Assemble();
OperatorPtr A;
Vector B, X;
a->FormLinearSystem(ess_tdof_list, x, *b, A, X, B);
// 13. Solve the system AX=B using PCG with an AMS preconditioner.
if (pa)
{
#ifdef MFEM_USE_AMGX
MatrixFreeAMS ams(*a, *A, *fespace, muinv, sigma, NULL, ess_bdr, useAmgX);
#else
MatrixFreeAMS ams(*a, *A, *fespace, muinv, sigma, NULL, ess_bdr);
#endif
CGSolver cg(MPI_COMM_WORLD);
cg.SetRelTol(1e-12);
cg.SetMaxIter(1000);
cg.SetPrintLevel(1);
cg.SetOperator(*A);
cg.SetPreconditioner(ams);
cg.Mult(B, X);
}
else
{
if (myid == 0)
{
cout << "Size of linear system: "
<< A.As<HypreParMatrix>()->GetGlobalNumRows() << endl;
}
ParFiniteElementSpace *prec_fespace =
(a->StaticCondensationIsEnabled() ? a->SCParFESpace() : fespace);
HypreAMS ams(*A.As<HypreParMatrix>(), prec_fespace);
HyprePCG pcg(*A.As<HypreParMatrix>());
pcg.SetTol(1e-12);
pcg.SetMaxIter(500);
pcg.SetPrintLevel(2);
pcg.SetPreconditioner(ams);
pcg.Mult(B, X);
}
// 14. Recover the parallel grid function corresponding to X. This is the
// local finite element solution on each processor.
a->RecoverFEMSolution(X, *b, x);
// 15. Compute and print the L^2 norm of the error.
{
real_t error = x.ComputeL2Error(E);
if (myid == 0)
{
cout << "\n|| E_h - E ||_{L^2} = " << error << '\n' << endl;
}
}
// 16. Save the refined mesh and the solution in parallel. This output can
// be viewed later using GLVis: "glvis -np <np> -m mesh -g sol".
{
ostringstream mesh_name, sol_name;
mesh_name << "mesh." << setfill('0') << setw(6) << myid;
sol_name << "sol." << setfill('0') << setw(6) << myid;
ofstream mesh_ofs(mesh_name.str().c_str());
mesh_ofs.precision(8);
pmesh->Print(mesh_ofs);
ofstream sol_ofs(sol_name.str().c_str());
sol_ofs.precision(8);
x.Save(sol_ofs);
}
// 17. Send the solution by socket to a GLVis server.
if (visualization)
{
char vishost[] = "localhost";
int visport = 19916;
socketstream sol_sock(vishost, visport);
sol_sock << "parallel " << num_procs << " " << myid << "\n";
sol_sock.precision(8);
sol_sock << "solution\n" << *pmesh << x << flush;
}
// 18. Free the used memory.
delete a;
delete sigma;
delete muinv;
delete b;
delete fespace;
delete fec;
delete pmesh;
return 0;
}
void E_exact(const Vector &x, Vector &E)
{
if (dim == 3)
{
E(0) = sin(kappa * x(1));
E(1) = sin(kappa * x(2));
E(2) = sin(kappa * x(0));
}
else
{
E(0) = sin(kappa * x(1));
E(1) = sin(kappa * x(0));
if (x.Size() == 3) { E(2) = 0.0; }
}
}
void f_exact(const Vector &x, Vector &f)
{
if (dim == 3)
{
f(0) = (1. + kappa * kappa) * sin(kappa * x(1));
f(1) = (1. + kappa * kappa) * sin(kappa * x(2));
f(2) = (1. + kappa * kappa) * sin(kappa * x(0));
}
else
{
f(0) = (1. + kappa * kappa) * sin(kappa * x(1));
f(1) = (1. + kappa * kappa) * sin(kappa * x(0));
if (x.Size() == 3) { f(2) = 0.0; }
}
}
|