1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
|
// MFEM Example 4
//
// Compile with: make ex4
//
// Sample runs: ex4 -m ../data/square-disc.mesh
// ex4 -m ../data/star.mesh
// ex4 -m ../data/beam-tet.mesh
// ex4 -m ../data/beam-hex.mesh
// ex4 -m ../data/beam-hex.mesh -o 2 -pa
// ex4 -m ../data/escher.mesh
// ex4 -m ../data/fichera.mesh -o 2 -hb
// ex4 -m ../data/fichera-q2.vtk
// ex4 -m ../data/fichera-q3.mesh -o 2 -sc
// ex4 -m ../data/square-disc-nurbs.mesh
// ex4 -m ../data/beam-hex-nurbs.mesh
// ex4 -m ../data/periodic-square.mesh -no-bc
// ex4 -m ../data/periodic-cube.mesh -no-bc
// ex4 -m ../data/amr-quad.mesh
// ex4 -m ../data/amr-hex.mesh
// ex4 -m ../data/amr-hex.mesh -o 2 -hb
// ex4 -m ../data/fichera-amr.mesh -o 2 -sc
// ex4 -m ../data/ref-prism.mesh -o 1
// ex4 -m ../data/octahedron.mesh -o 1
// ex4 -m ../data/star-surf.mesh -o 1
//
// Device sample runs:
// ex4 -m ../data/star.mesh -pa -d cuda
// ex4 -m ../data/star.mesh -pa -d raja-cuda
// ex4 -m ../data/star.mesh -pa -d raja-omp
// ex4 -m ../data/beam-hex.mesh -pa -d cuda
//
// Description: This example code solves a simple 2D/3D H(div) diffusion
// problem corresponding to the second order definite equation
// -grad(alpha div F) + beta F = f with boundary condition F dot n
// = <given normal field>. Here, we use a given exact solution F
// and compute the corresponding r.h.s. f. We discretize with
// Raviart-Thomas finite elements.
//
// The example demonstrates the use of H(div) finite element
// spaces with the grad-div and H(div) vector finite element mass
// bilinear form, as well as the computation of discretization
// error when the exact solution is known. Bilinear form
// hybridization and static condensation are also illustrated.
//
// We recommend viewing examples 1-3 before viewing this example.
#include "mfem.hpp"
#include <fstream>
#include <iostream>
using namespace std;
using namespace mfem;
// Exact solution, F, and r.h.s., f. See below for implementation.
void F_exact(const Vector &, Vector &);
void f_exact(const Vector &, Vector &);
real_t freq = 1.0, kappa;
int main(int argc, char *argv[])
{
// 1. Parse command-line options.
const char *mesh_file = "../data/star.mesh";
int order = 1;
bool set_bc = true;
bool static_cond = false;
bool hybridization = false;
bool pa = false;
const char *device_config = "cpu";
bool visualization = 1;
OptionsParser args(argc, argv);
args.AddOption(&mesh_file, "-m", "--mesh",
"Mesh file to use.");
args.AddOption(&order, "-o", "--order",
"Finite element order (polynomial degree).");
args.AddOption(&set_bc, "-bc", "--impose-bc", "-no-bc", "--dont-impose-bc",
"Impose or not essential boundary conditions.");
args.AddOption(&freq, "-f", "--frequency", "Set the frequency for the exact"
" solution.");
args.AddOption(&static_cond, "-sc", "--static-condensation", "-no-sc",
"--no-static-condensation", "Enable static condensation.");
args.AddOption(&hybridization, "-hb", "--hybridization", "-no-hb",
"--no-hybridization", "Enable hybridization.");
args.AddOption(&pa, "-pa", "--partial-assembly", "-no-pa",
"--no-partial-assembly", "Enable Partial Assembly.");
args.AddOption(&device_config, "-d", "--device",
"Device configuration string, see Device::Configure().");
args.AddOption(&visualization, "-vis", "--visualization", "-no-vis",
"--no-visualization",
"Enable or disable GLVis visualization.");
args.Parse();
if (!args.Good())
{
args.PrintUsage(cout);
return 1;
}
args.PrintOptions(cout);
kappa = freq * M_PI;
// 2. Enable hardware devices such as GPUs, and programming models such as
// CUDA, OCCA, RAJA and OpenMP based on command line options.
Device device(device_config);
device.Print();
// 3. Read the mesh from the given mesh file. We can handle triangular,
// quadrilateral, tetrahedral, hexahedral, surface and volume, as well as
// periodic meshes with the same code.
Mesh *mesh = new Mesh(mesh_file, 1, 1);
int dim = mesh->Dimension();
int sdim = mesh->SpaceDimension();
// 4. Refine the mesh to increase the resolution. In this example we do
// 'ref_levels' of uniform refinement. We choose 'ref_levels' to be the
// largest number that gives a final mesh with no more than 25,000
// elements.
{
int ref_levels =
(int)floor(log(25000./mesh->GetNE())/log(2.)/dim);
for (int l = 0; l < ref_levels; l++)
{
mesh->UniformRefinement();
}
}
// 5. Define a finite element space on the mesh. Here we use the
// Raviart-Thomas finite elements of the specified order.
FiniteElementCollection *fec = new RT_FECollection(order-1, dim);
FiniteElementSpace *fespace = new FiniteElementSpace(mesh, fec);
cout << "Number of finite element unknowns: "
<< fespace->GetTrueVSize() << endl;
// 6. Determine the list of true (i.e. conforming) essential boundary dofs.
// In this example, the boundary conditions are defined by marking all
// the boundary attributes from the mesh as essential (Dirichlet) and
// converting them to a list of true dofs.
Array<int> ess_tdof_list;
if (mesh->bdr_attributes.Size())
{
Array<int> ess_bdr(mesh->bdr_attributes.Max());
ess_bdr = set_bc ? 1 : 0;
fespace->GetEssentialTrueDofs(ess_bdr, ess_tdof_list);
}
// 7. Set up the linear form b(.) which corresponds to the right-hand side
// of the FEM linear system, which in this case is (f,phi_i) where f is
// given by the function f_exact and phi_i are the basis functions in the
// finite element fespace.
VectorFunctionCoefficient f(sdim, f_exact);
LinearForm *b = new LinearForm(fespace);
b->AddDomainIntegrator(new VectorFEDomainLFIntegrator(f));
b->Assemble();
// 8. Define the solution vector x as a finite element grid function
// corresponding to fespace. Initialize x by projecting the exact
// solution. Note that only values from the boundary faces will be used
// when eliminating the non-homogeneous boundary condition to modify the
// r.h.s. vector b.
GridFunction x(fespace);
VectorFunctionCoefficient F(sdim, F_exact);
x.ProjectCoefficient(F);
// 9. Set up the bilinear form corresponding to the H(div) diffusion operator
// grad alpha div + beta I, by adding the div-div and the mass domain
// integrators.
Coefficient *alpha = new ConstantCoefficient(1.0);
Coefficient *beta = new ConstantCoefficient(1.0);
BilinearForm *a = new BilinearForm(fespace);
if (pa) { a->SetAssemblyLevel(AssemblyLevel::PARTIAL); }
a->AddDomainIntegrator(new DivDivIntegrator(*alpha));
a->AddDomainIntegrator(new VectorFEMassIntegrator(*beta));
// 10. Assemble the bilinear form and the corresponding linear system,
// applying any necessary transformations such as: eliminating boundary
// conditions, applying conforming constraints for non-conforming AMR,
// static condensation, hybridization, etc.
FiniteElementCollection *hfec = NULL;
FiniteElementSpace *hfes = NULL;
if (static_cond)
{
a->EnableStaticCondensation();
}
else if (hybridization)
{
hfec = new DG_Interface_FECollection(order-1, dim);
hfes = new FiniteElementSpace(mesh, hfec);
a->EnableHybridization(hfes, new NormalTraceJumpIntegrator(),
ess_tdof_list);
}
a->Assemble();
OperatorPtr A;
Vector B, X;
a->FormLinearSystem(ess_tdof_list, x, *b, A, X, B);
cout << "Size of linear system: " << A->Height() << endl;
// 11. Solve the linear system A X = B.
if (!pa)
{
#ifndef MFEM_USE_SUITESPARSE
// Use a simple symmetric Gauss-Seidel preconditioner with PCG.
GSSmoother M((SparseMatrix&)(*A));
PCG(*A, M, B, X, 1, 10000, 1e-20, 0.0);
#else
// If MFEM was compiled with SuiteSparse, use UMFPACK to solve the system.
UMFPackSolver umf_solver;
umf_solver.Control[UMFPACK_ORDERING] = UMFPACK_ORDERING_METIS;
umf_solver.SetOperator(*A);
umf_solver.Mult(B, X);
#endif
}
else // Jacobi preconditioning in partial assembly mode
{
if (UsesTensorBasis(*fespace))
{
OperatorJacobiSmoother M(*a, ess_tdof_list);
PCG(*A, M, B, X, 1, 10000, 1e-20, 0.0);
}
else
{
CG(*A, B, X, 1, 10000, 1e-20, 0.0);
}
}
// 12. Recover the solution as a finite element grid function.
a->RecoverFEMSolution(X, *b, x);
// 13. Compute and print the L^2 norm of the error.
cout << "\n|| F_h - F ||_{L^2} = " << x.ComputeL2Error(F) << '\n' << endl;
// 14. Save the refined mesh and the solution. This output can be viewed
// later using GLVis: "glvis -m refined.mesh -g sol.gf".
{
ofstream mesh_ofs("refined.mesh");
mesh_ofs.precision(8);
mesh->Print(mesh_ofs);
ofstream sol_ofs("sol.gf");
sol_ofs.precision(8);
x.Save(sol_ofs);
}
// 15. Send the solution by socket to a GLVis server.
if (visualization)
{
char vishost[] = "localhost";
int visport = 19916;
socketstream sol_sock(vishost, visport);
sol_sock.precision(8);
sol_sock << "solution\n" << *mesh << x << flush;
}
// 16. Free the used memory.
delete hfes;
delete hfec;
delete a;
delete alpha;
delete beta;
delete b;
delete fespace;
delete fec;
delete mesh;
return 0;
}
// The exact solution (for non-surface meshes)
void F_exact(const Vector &p, Vector &F)
{
int dim = p.Size();
real_t x = p(0);
real_t y = p(1);
// real_t z = (dim == 3) ? p(2) : 0.0; // Uncomment if F is changed to depend on z
F(0) = cos(kappa*x)*sin(kappa*y);
F(1) = cos(kappa*y)*sin(kappa*x);
if (dim == 3)
{
F(2) = 0.0;
}
}
// The right hand side
void f_exact(const Vector &p, Vector &f)
{
int dim = p.Size();
real_t x = p(0);
real_t y = p(1);
// real_t z = (dim == 3) ? p(2) : 0.0; // Uncomment if f is changed to depend on z
real_t temp = 1 + 2*kappa*kappa;
f(0) = temp*cos(kappa*x)*sin(kappa*y);
f(1) = temp*cos(kappa*y)*sin(kappa*x);
if (dim == 3)
{
f(2) = 0;
}
}
|