1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
|
// MFEM Example 5
//
// Compile with: make ex5
//
// Sample runs: ex5 -m ../data/square-disc.mesh
// ex5 -m ../data/star.mesh
// ex5 -m ../data/star.mesh -pa
// ex5 -m ../data/beam-tet.mesh
// ex5 -m ../data/beam-hex.mesh
// ex5 -m ../data/beam-hex.mesh -pa
// ex5 -m ../data/escher.mesh
// ex5 -m ../data/fichera.mesh
//
// Device sample runs:
// ex5 -m ../data/star.mesh -pa -d cuda
// ex5 -m ../data/star.mesh -pa -d raja-cuda
// ex5 -m ../data/star.mesh -pa -d raja-omp
// ex5 -m ../data/beam-hex.mesh -pa -d cuda
//
// Description: This example code solves a simple 2D/3D mixed Darcy problem
// corresponding to the saddle point system
//
// k*u + grad p = f
// - div u = g
//
// with natural boundary condition -p = <given pressure>.
// Here, we use a given exact solution (u,p) and compute the
// corresponding r.h.s. (f,g). We discretize with Raviart-Thomas
// finite elements (velocity u) and piecewise discontinuous
// polynomials (pressure p).
//
// The example demonstrates the use of the BlockOperator class, as
// well as the collective saving of several grid functions in
// VisIt (visit.llnl.gov) and ParaView (paraview.org) formats.
//
// We recommend viewing examples 1-4 before viewing this example.
#include "mfem.hpp"
#include <fstream>
#include <iostream>
#include <algorithm>
using namespace std;
using namespace mfem;
// Define the analytical solution and forcing terms / boundary conditions
void uFun_ex(const Vector & x, Vector & u);
real_t pFun_ex(const Vector & x);
void fFun(const Vector & x, Vector & f);
real_t gFun(const Vector & x);
real_t f_natural(const Vector & x);
int main(int argc, char *argv[])
{
StopWatch chrono;
// 1. Parse command-line options.
const char *mesh_file = "../data/star.mesh";
int order = 1;
bool pa = false;
const char *device_config = "cpu";
bool visualization = 1;
OptionsParser args(argc, argv);
args.AddOption(&mesh_file, "-m", "--mesh",
"Mesh file to use.");
args.AddOption(&order, "-o", "--order",
"Finite element order (polynomial degree).");
args.AddOption(&pa, "-pa", "--partial-assembly", "-no-pa",
"--no-partial-assembly", "Enable Partial Assembly.");
args.AddOption(&device_config, "-d", "--device",
"Device configuration string, see Device::Configure().");
args.AddOption(&visualization, "-vis", "--visualization", "-no-vis",
"--no-visualization",
"Enable or disable GLVis visualization.");
args.Parse();
if (!args.Good())
{
args.PrintUsage(cout);
return 1;
}
args.PrintOptions(cout);
// 2. Enable hardware devices such as GPUs, and programming models such as
// CUDA, OCCA, RAJA and OpenMP based on command line options.
Device device(device_config);
device.Print();
// 3. Read the mesh from the given mesh file. We can handle triangular,
// quadrilateral, tetrahedral, hexahedral, surface and volume meshes with
// the same code.
Mesh *mesh = new Mesh(mesh_file, 1, 1);
int dim = mesh->Dimension();
// 4. Refine the mesh to increase the resolution. In this example we do
// 'ref_levels' of uniform refinement. We choose 'ref_levels' to be the
// largest number that gives a final mesh with no more than 10,000
// elements.
{
int ref_levels =
(int)floor(log(10000./mesh->GetNE())/log(2.)/dim);
for (int l = 0; l < ref_levels; l++)
{
mesh->UniformRefinement();
}
}
// 5. Define a finite element space on the mesh. Here we use the
// Raviart-Thomas finite elements of the specified order.
FiniteElementCollection *hdiv_coll(new RT_FECollection(order, dim));
FiniteElementCollection *l2_coll(new L2_FECollection(order, dim));
FiniteElementSpace *R_space = new FiniteElementSpace(mesh, hdiv_coll);
FiniteElementSpace *W_space = new FiniteElementSpace(mesh, l2_coll);
// 6. Define the BlockStructure of the problem, i.e. define the array of
// offsets for each variable. The last component of the Array is the sum
// of the dimensions of each block.
Array<int> block_offsets(3); // number of variables + 1
block_offsets[0] = 0;
block_offsets[1] = R_space->GetVSize();
block_offsets[2] = W_space->GetVSize();
block_offsets.PartialSum();
std::cout << "***********************************************************\n";
std::cout << "dim(R) = " << block_offsets[1] - block_offsets[0] << "\n";
std::cout << "dim(W) = " << block_offsets[2] - block_offsets[1] << "\n";
std::cout << "dim(R+W) = " << block_offsets.Last() << "\n";
std::cout << "***********************************************************\n";
// 7. Define the coefficients, analytical solution, and rhs of the PDE.
ConstantCoefficient k(1.0);
VectorFunctionCoefficient fcoeff(dim, fFun);
FunctionCoefficient fnatcoeff(f_natural);
FunctionCoefficient gcoeff(gFun);
VectorFunctionCoefficient ucoeff(dim, uFun_ex);
FunctionCoefficient pcoeff(pFun_ex);
// 8. Allocate memory (x, rhs) for the analytical solution and the right hand
// side. Define the GridFunction u,p for the finite element solution and
// linear forms fform and gform for the right hand side. The data
// allocated by x and rhs are passed as a reference to the grid functions
// (u,p) and the linear forms (fform, gform).
MemoryType mt = device.GetMemoryType();
BlockVector x(block_offsets, mt), rhs(block_offsets, mt);
LinearForm *fform(new LinearForm);
fform->Update(R_space, rhs.GetBlock(0), 0);
fform->AddDomainIntegrator(new VectorFEDomainLFIntegrator(fcoeff));
fform->AddBoundaryIntegrator(new VectorFEBoundaryFluxLFIntegrator(fnatcoeff));
fform->Assemble();
fform->SyncAliasMemory(rhs);
LinearForm *gform(new LinearForm);
gform->Update(W_space, rhs.GetBlock(1), 0);
gform->AddDomainIntegrator(new DomainLFIntegrator(gcoeff));
gform->Assemble();
gform->SyncAliasMemory(rhs);
// 9. Assemble the finite element matrices for the Darcy operator
//
// D = [ M B^T ]
// [ B 0 ]
// where:
//
// M = \int_\Omega k u_h \cdot v_h d\Omega u_h, v_h \in R_h
// B = -\int_\Omega \div u_h q_h d\Omega u_h \in R_h, q_h \in W_h
BilinearForm *mVarf(new BilinearForm(R_space));
MixedBilinearForm *bVarf(new MixedBilinearForm(R_space, W_space));
if (pa) { mVarf->SetAssemblyLevel(AssemblyLevel::PARTIAL); }
mVarf->AddDomainIntegrator(new VectorFEMassIntegrator(k));
mVarf->Assemble();
if (!pa) { mVarf->Finalize(); }
if (pa) { bVarf->SetAssemblyLevel(AssemblyLevel::PARTIAL); }
bVarf->AddDomainIntegrator(new VectorFEDivergenceIntegrator);
bVarf->Assemble();
if (!pa) { bVarf->Finalize(); }
BlockOperator darcyOp(block_offsets);
TransposeOperator *Bt = NULL;
if (pa)
{
Bt = new TransposeOperator(bVarf);
darcyOp.SetBlock(0,0, mVarf);
darcyOp.SetBlock(0,1, Bt, -1.0);
darcyOp.SetBlock(1,0, bVarf, -1.0);
}
else
{
SparseMatrix &M(mVarf->SpMat());
SparseMatrix &B(bVarf->SpMat());
B *= -1.;
Bt = new TransposeOperator(&B);
darcyOp.SetBlock(0,0, &M);
darcyOp.SetBlock(0,1, Bt);
darcyOp.SetBlock(1,0, &B);
}
// 10. Construct the operators for preconditioner
//
// P = [ diag(M) 0 ]
// [ 0 B diag(M)^-1 B^T ]
//
// Here we use Symmetric Gauss-Seidel to approximate the inverse of the
// pressure Schur Complement
SparseMatrix *MinvBt = NULL;
Vector Md(mVarf->Height());
BlockDiagonalPreconditioner darcyPrec(block_offsets);
Solver *invM, *invS;
SparseMatrix *S = NULL;
if (pa)
{
mVarf->AssembleDiagonal(Md);
auto Md_host = Md.HostRead();
Vector invMd(mVarf->Height());
for (int i=0; i<mVarf->Height(); ++i)
{
invMd(i) = 1.0 / Md_host[i];
}
Vector BMBt_diag(bVarf->Height());
bVarf->AssembleDiagonal_ADAt(invMd, BMBt_diag);
Array<int> ess_tdof_list; // empty
invM = new OperatorJacobiSmoother(Md, ess_tdof_list);
invS = new OperatorJacobiSmoother(BMBt_diag, ess_tdof_list);
}
else
{
SparseMatrix &M(mVarf->SpMat());
M.GetDiag(Md);
Md.HostReadWrite();
SparseMatrix &B(bVarf->SpMat());
MinvBt = Transpose(B);
for (int i = 0; i < Md.Size(); i++)
{
MinvBt->ScaleRow(i, 1./Md(i));
}
S = Mult(B, *MinvBt);
invM = new DSmoother(M);
#ifndef MFEM_USE_SUITESPARSE
invS = new GSSmoother(*S);
#else
invS = new UMFPackSolver(*S);
#endif
}
invM->iterative_mode = false;
invS->iterative_mode = false;
darcyPrec.SetDiagonalBlock(0, invM);
darcyPrec.SetDiagonalBlock(1, invS);
// 11. Solve the linear system with MINRES.
// Check the norm of the unpreconditioned residual.
int maxIter(1000);
real_t rtol(1.e-6);
real_t atol(1.e-10);
chrono.Clear();
chrono.Start();
MINRESSolver solver;
solver.SetAbsTol(atol);
solver.SetRelTol(rtol);
solver.SetMaxIter(maxIter);
solver.SetOperator(darcyOp);
solver.SetPreconditioner(darcyPrec);
solver.SetPrintLevel(1);
x = 0.0;
solver.Mult(rhs, x);
if (device.IsEnabled()) { x.HostRead(); }
chrono.Stop();
if (solver.GetConverged())
{
std::cout << "MINRES converged in " << solver.GetNumIterations()
<< " iterations with a residual norm of "
<< solver.GetFinalNorm() << ".\n";
}
else
{
std::cout << "MINRES did not converge in " << solver.GetNumIterations()
<< " iterations. Residual norm is " << solver.GetFinalNorm()
<< ".\n";
}
std::cout << "MINRES solver took " << chrono.RealTime() << "s.\n";
// 12. Create the grid functions u and p. Compute the L2 error norms.
GridFunction u, p;
u.MakeRef(R_space, x.GetBlock(0), 0);
p.MakeRef(W_space, x.GetBlock(1), 0);
int order_quad = max(2, 2*order+1);
const IntegrationRule *irs[Geometry::NumGeom];
for (int i=0; i < Geometry::NumGeom; ++i)
{
irs[i] = &(IntRules.Get(i, order_quad));
}
real_t err_u = u.ComputeL2Error(ucoeff, irs);
real_t norm_u = ComputeLpNorm(2., ucoeff, *mesh, irs);
real_t err_p = p.ComputeL2Error(pcoeff, irs);
real_t norm_p = ComputeLpNorm(2., pcoeff, *mesh, irs);
std::cout << "|| u_h - u_ex || / || u_ex || = " << err_u / norm_u << "\n";
std::cout << "|| p_h - p_ex || / || p_ex || = " << err_p / norm_p << "\n";
// 13. Save the mesh and the solution. This output can be viewed later using
// GLVis: "glvis -m ex5.mesh -g sol_u.gf" or "glvis -m ex5.mesh -g
// sol_p.gf".
{
ofstream mesh_ofs("ex5.mesh");
mesh_ofs.precision(8);
mesh->Print(mesh_ofs);
ofstream u_ofs("sol_u.gf");
u_ofs.precision(8);
u.Save(u_ofs);
ofstream p_ofs("sol_p.gf");
p_ofs.precision(8);
p.Save(p_ofs);
}
// 14. Save data in the VisIt format
VisItDataCollection visit_dc("Example5", mesh);
visit_dc.RegisterField("velocity", &u);
visit_dc.RegisterField("pressure", &p);
visit_dc.Save();
// 15. Save data in the ParaView format
ParaViewDataCollection paraview_dc("Example5", mesh);
paraview_dc.SetPrefixPath("ParaView");
paraview_dc.SetLevelsOfDetail(order);
paraview_dc.SetCycle(0);
paraview_dc.SetDataFormat(VTKFormat::BINARY);
paraview_dc.SetHighOrderOutput(true);
paraview_dc.SetTime(0.0); // set the time
paraview_dc.RegisterField("velocity",&u);
paraview_dc.RegisterField("pressure",&p);
paraview_dc.Save();
// 16. Send the solution by socket to a GLVis server.
if (visualization)
{
char vishost[] = "localhost";
int visport = 19916;
socketstream u_sock(vishost, visport);
u_sock.precision(8);
u_sock << "solution\n" << *mesh << u << "window_title 'Velocity'" << endl;
socketstream p_sock(vishost, visport);
p_sock.precision(8);
p_sock << "solution\n" << *mesh << p << "window_title 'Pressure'" << endl;
}
// 17. Free the used memory.
delete fform;
delete gform;
delete invM;
delete invS;
delete S;
delete Bt;
delete MinvBt;
delete mVarf;
delete bVarf;
delete W_space;
delete R_space;
delete l2_coll;
delete hdiv_coll;
delete mesh;
return 0;
}
void uFun_ex(const Vector & x, Vector & u)
{
real_t xi(x(0));
real_t yi(x(1));
real_t zi(0.0);
if (x.Size() == 3)
{
zi = x(2);
}
u(0) = - exp(xi)*sin(yi)*cos(zi);
u(1) = - exp(xi)*cos(yi)*cos(zi);
if (x.Size() == 3)
{
u(2) = exp(xi)*sin(yi)*sin(zi);
}
}
// Change if needed
real_t pFun_ex(const Vector & x)
{
real_t xi(x(0));
real_t yi(x(1));
real_t zi(0.0);
if (x.Size() == 3)
{
zi = x(2);
}
return exp(xi)*sin(yi)*cos(zi);
}
void fFun(const Vector & x, Vector & f)
{
f = 0.0;
}
real_t gFun(const Vector & x)
{
if (x.Size() == 3)
{
return -pFun_ex(x);
}
else
{
return 0;
}
}
real_t f_natural(const Vector & x)
{
return (-pFun_ex(x));
}
|