1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
|
// MFEM Example 6
//
// Compile with: make ex6
//
// Sample runs: ex6 -m ../data/square-disc.mesh -o 1
// ex6 -m ../data/square-disc.mesh -o 2
// ex6 -m ../data/square-disc-nurbs.mesh -o 2
// ex6 -m ../data/star.mesh -o 3
// ex6 -m ../data/escher.mesh -o 2
// ex6 -m ../data/fichera.mesh -o 2
// ex6 -m ../data/disc-nurbs.mesh -o 2
// ex6 -m ../data/ball-nurbs.mesh
// ex6 -m ../data/pipe-nurbs.mesh
// ex6 -m ../data/star-surf.mesh -o 2
// ex6 -m ../data/square-disc-surf.mesh -o 2
// ex6 -m ../data/amr-quad.mesh
// ex6 -m ../data/inline-segment.mesh -o 1 -md 100
//
// Device sample runs:
// ex6 -pa -d cuda
// ex6 -pa -d occa-cuda
// ex6 -pa -d raja-omp
// ex6 -pa -d ceed-cpu
// * ex6 -pa -d ceed-cuda
// ex6 -pa -d ceed-cuda:/gpu/cuda/shared
//
// Description: This is a version of Example 1 with a simple adaptive mesh
// refinement loop. The problem being solved is again the Laplace
// equation -Delta u = 1 with homogeneous Dirichlet boundary
// conditions. The problem is solved on a sequence of meshes which
// are locally refined in a conforming (triangles, tetrahedrons)
// or non-conforming (quadrilaterals, hexahedra) manner according
// to a simple ZZ error estimator.
//
// The example demonstrates MFEM's capability to work with both
// conforming and nonconforming refinements, in 2D and 3D, on
// linear, curved and surface meshes. Interpolation of functions
// from coarse to fine meshes, as well as persistent GLVis
// visualization are also illustrated.
//
// We recommend viewing Example 1 before viewing this example.
#include "mfem.hpp"
#include <fstream>
#include <iostream>
using namespace std;
using namespace mfem;
int main(int argc, char *argv[])
{
// 1. Parse command-line options.
const char *mesh_file = "../data/star.mesh";
int order = 1;
bool pa = false;
const char *device_config = "cpu";
int max_dofs = 50000;
bool LSZZ = false;
bool visualization = true;
OptionsParser args(argc, argv);
args.AddOption(&mesh_file, "-m", "--mesh",
"Mesh file to use.");
args.AddOption(&order, "-o", "--order",
"Finite element order (polynomial degree).");
args.AddOption(&pa, "-pa", "--partial-assembly", "-no-pa",
"--no-partial-assembly", "Enable Partial Assembly.");
args.AddOption(&device_config, "-d", "--device",
"Device configuration string, see Device::Configure().");
args.AddOption(&max_dofs, "-md", "--max-dofs",
"Stop after reaching this many degrees of freedom.");
args.AddOption(&LSZZ, "-ls", "--ls-zz", "-no-ls",
"--no-ls-zz",
"Switch to least-squares ZZ estimator.");
args.AddOption(&visualization, "-vis", "--visualization", "-no-vis",
"--no-visualization",
"Enable or disable GLVis visualization.");
args.Parse();
if (!args.Good())
{
args.PrintUsage(cout);
return 1;
}
args.PrintOptions(cout);
// 2. Enable hardware devices such as GPUs, and programming models such as
// CUDA, OCCA, RAJA and OpenMP based on command line options.
Device device(device_config);
device.Print();
// 3. Read the mesh from the given mesh file. We can handle triangular,
// quadrilateral, tetrahedral, hexahedral, surface and volume meshes with
// the same code.
Mesh mesh(mesh_file, 1, 1);
int dim = mesh.Dimension();
int sdim = mesh.SpaceDimension();
// 4. Since a NURBS mesh can currently only be refined uniformly, we need to
// convert it to a piecewise-polynomial curved mesh. First we refine the
// NURBS mesh a bit more and then project the curvature to quadratic Nodes.
if (mesh.NURBSext)
{
for (int i = 0; i < 2; i++)
{
mesh.UniformRefinement();
}
mesh.SetCurvature(2);
}
// 5. Define a finite element space on the mesh. The polynomial order is
// one (linear) by default, but this can be changed on the command line.
H1_FECollection fec(order, dim);
FiniteElementSpace fespace(&mesh, &fec);
// 6. As in Example 1, we set up bilinear and linear forms corresponding to
// the Laplace problem -\Delta u = 1. We don't assemble the discrete
// problem yet, this will be done in the main loop.
BilinearForm a(&fespace);
if (pa)
{
a.SetAssemblyLevel(AssemblyLevel::PARTIAL);
a.SetDiagonalPolicy(Operator::DIAG_ONE);
}
LinearForm b(&fespace);
ConstantCoefficient one(1.0);
ConstantCoefficient zero(0.0);
BilinearFormIntegrator *integ = new DiffusionIntegrator(one);
a.AddDomainIntegrator(integ);
b.AddDomainIntegrator(new DomainLFIntegrator(one));
// 7. The solution vector x and the associated finite element grid function
// will be maintained over the AMR iterations. We initialize it to zero.
GridFunction x(&fespace);
x = 0.0;
// 8. All boundary attributes will be used for essential (Dirichlet) BC.
MFEM_VERIFY(mesh.bdr_attributes.Size() > 0,
"Boundary attributes required in the mesh.");
Array<int> ess_bdr(mesh.bdr_attributes.Max());
ess_bdr = 1;
// 9. Connect to GLVis.
char vishost[] = "localhost";
int visport = 19916;
socketstream sol_sock;
if (visualization)
{
sol_sock.open(vishost, visport);
}
// 10. Set up an error estimator. Here we use the Zienkiewicz-Zhu estimator
// that uses the ComputeElementFlux method of the DiffusionIntegrator to
// recover a smoothed flux (gradient) that is subtracted from the element
// flux to get an error indicator. We need to supply the space for the
// smoothed flux: an (H1)^sdim (i.e., vector-valued) space is used here.
ErrorEstimator *estimator{nullptr};
if (LSZZ)
{
estimator = new LSZienkiewiczZhuEstimator(*integ, x);
if (dim == 3 && mesh.GetElementType(0) != Element::HEXAHEDRON)
{
dynamic_cast<LSZienkiewiczZhuEstimator *>
(estimator)->SetTichonovRegularization();
}
}
else
{
auto flux_fes = new FiniteElementSpace(&mesh, &fec, sdim);
estimator = new ZienkiewiczZhuEstimator(*integ, x, flux_fes);
dynamic_cast<ZienkiewiczZhuEstimator *>(estimator)->SetAnisotropic();
}
// 11. A refiner selects and refines elements based on a refinement strategy.
// The strategy here is to refine elements with errors larger than a
// fraction of the maximum element error. Other strategies are possible.
// The refiner will call the given error estimator.
ThresholdRefiner refiner(*estimator);
refiner.SetTotalErrorFraction(0.7);
// 12. The main AMR loop. In each iteration we solve the problem on the
// current mesh, visualize the solution, and refine the mesh.
for (int it = 0; ; it++)
{
int cdofs = fespace.GetTrueVSize();
cout << "\nAMR iteration " << it << endl;
cout << "Number of unknowns: " << cdofs << endl;
// 13. Assemble the right-hand side.
b.Assemble();
// 14. Set Dirichlet boundary values in the GridFunction x.
// Determine the list of Dirichlet true DOFs in the linear system.
Array<int> ess_tdof_list;
x.ProjectBdrCoefficient(zero, ess_bdr);
fespace.GetEssentialTrueDofs(ess_bdr, ess_tdof_list);
// 15. Assemble the stiffness matrix.
a.Assemble();
// 16. Create the linear system: eliminate boundary conditions, constrain
// hanging nodes and possibly apply other transformations. The system
// will be solved for true (unconstrained) DOFs only.
OperatorPtr A;
Vector B, X;
const int copy_interior = 1;
a.FormLinearSystem(ess_tdof_list, x, b, A, X, B, copy_interior);
// 17. Solve the linear system A X = B.
if (!pa)
{
#ifndef MFEM_USE_SUITESPARSE
// Use a simple symmetric Gauss-Seidel preconditioner with PCG.
GSSmoother M((SparseMatrix&)(*A));
PCG(*A, M, B, X, 3, 200, 1e-12, 0.0);
#else
// If MFEM was compiled with SuiteSparse, use UMFPACK to solve the system.
UMFPackSolver umf_solver;
umf_solver.Control[UMFPACK_ORDERING] = UMFPACK_ORDERING_METIS;
umf_solver.SetOperator(*A);
umf_solver.Mult(B, X);
#endif
}
else // Diagonal preconditioning in partial assembly mode.
{
OperatorJacobiSmoother M(a, ess_tdof_list);
PCG(*A, M, B, X, 3, 2000, 1e-12, 0.0);
}
// 18. After solving the linear system, reconstruct the solution as a
// finite element GridFunction. Constrained nodes are interpolated
// from true DOFs (it may therefore happen that x.Size() >= X.Size()).
a.RecoverFEMSolution(X, b, x);
// 19. Send solution by socket to the GLVis server.
if (visualization && sol_sock.good())
{
sol_sock.precision(8);
sol_sock << "solution\n" << mesh << x << flush;
}
if (cdofs > max_dofs)
{
cout << "Reached the maximum number of dofs. Stop." << endl;
break;
}
// 20. Call the refiner to modify the mesh. The refiner calls the error
// estimator to obtain element errors, then it selects elements to be
// refined and finally it modifies the mesh. The Stop() method can be
// used to determine if a stopping criterion was met.
refiner.Apply(mesh);
if (refiner.Stop())
{
cout << "Stopping criterion satisfied. Stop." << endl;
break;
}
// 21. Update the space to reflect the new state of the mesh. Also,
// interpolate the solution x so that it lies in the new space but
// represents the same function. This saves solver iterations later
// since we'll have a good initial guess of x in the next step.
// Internally, FiniteElementSpace::Update() calculates an
// interpolation matrix which is then used by GridFunction::Update().
fespace.Update();
x.Update();
// 22. Inform also the bilinear and linear forms that the space has
// changed.
a.Update();
b.Update();
}
delete estimator;
return 0;
}
|