1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
|
// MFEM Example 7
//
// Compile with: make ex7
//
// Sample runs: ex7 -e 0 -o 2 -r 4
// ex7 -e 1 -o 2 -r 4 -snap
// ex7 -e 0 -amr 1
// ex7 -e 1 -amr 2 -o 2
//
// Description: This example code demonstrates the use of MFEM to define a
// triangulation of a unit sphere and a simple isoparametric
// finite element discretization of the Laplace problem with mass
// term, -Delta u + u = f.
//
// The example highlights mesh generation, the use of mesh
// refinement, high-order meshes and finite elements, as well as
// surface-based linear and bilinear forms corresponding to the
// left-hand side and right-hand side of the discrete linear
// system. Simple local mesh refinement is also demonstrated.
//
// We recommend viewing Example 1 before viewing this example.
#include "mfem.hpp"
#include <fstream>
#include <iostream>
using namespace std;
using namespace mfem;
// Exact solution and r.h.s., see below for implementation.
real_t analytic_solution(const Vector &x);
real_t analytic_rhs(const Vector &x);
void SnapNodes(Mesh &mesh);
int main(int argc, char *argv[])
{
// 1. Parse command-line options.
int elem_type = 1;
int ref_levels = 2;
int amr = 0;
int order = 2;
bool always_snap = false;
bool visualization = 1;
OptionsParser args(argc, argv);
args.AddOption(&elem_type, "-e", "--elem",
"Type of elements to use: 0 - triangles, 1 - quads.");
args.AddOption(&order, "-o", "--order",
"Finite element order (polynomial degree).");
args.AddOption(&ref_levels, "-r", "--refine",
"Number of times to refine the mesh uniformly.");
args.AddOption(&amr, "-amr", "--refine-locally",
"Additional local (non-conforming) refinement:"
" 1 = refine around north pole, 2 = refine randomly.");
args.AddOption(&visualization, "-vis", "--visualization", "-no-vis",
"--no-visualization",
"Enable or disable GLVis visualization.");
args.AddOption(&always_snap, "-snap", "--always-snap", "-no-snap",
"--snap-at-the-end",
"If true, snap nodes to the sphere initially and after each refinement "
"otherwise, snap only after the last refinement");
args.Parse();
if (!args.Good())
{
args.PrintUsage(cout);
return 1;
}
args.PrintOptions(cout);
// 2. Generate an initial high-order (surface) mesh on the unit sphere. The
// Mesh object represents a 2D mesh in 3 spatial dimensions. We first add
// the elements and the vertices of the mesh, and then make it high-order
// by specifying a finite element space for its nodes.
int Nvert = 8, Nelem = 6;
if (elem_type == 0)
{
Nvert = 6;
Nelem = 8;
}
Mesh *mesh = new Mesh(2, Nvert, Nelem, 0, 3);
if (elem_type == 0) // inscribed octahedron
{
const real_t tri_v[6][3] =
{
{ 1, 0, 0}, { 0, 1, 0}, {-1, 0, 0},
{ 0, -1, 0}, { 0, 0, 1}, { 0, 0, -1}
};
const int tri_e[8][3] =
{
{0, 1, 4}, {1, 2, 4}, {2, 3, 4}, {3, 0, 4},
{1, 0, 5}, {2, 1, 5}, {3, 2, 5}, {0, 3, 5}
};
for (int j = 0; j < Nvert; j++)
{
mesh->AddVertex(tri_v[j]);
}
for (int j = 0; j < Nelem; j++)
{
int attribute = j + 1;
mesh->AddTriangle(tri_e[j], attribute);
}
mesh->FinalizeTriMesh(1, 1, true);
}
else // inscribed cube
{
const real_t quad_v[8][3] =
{
{-1, -1, -1}, {+1, -1, -1}, {+1, +1, -1}, {-1, +1, -1},
{-1, -1, +1}, {+1, -1, +1}, {+1, +1, +1}, {-1, +1, +1}
};
const int quad_e[6][4] =
{
{3, 2, 1, 0}, {0, 1, 5, 4}, {1, 2, 6, 5},
{2, 3, 7, 6}, {3, 0, 4, 7}, {4, 5, 6, 7}
};
for (int j = 0; j < Nvert; j++)
{
mesh->AddVertex(quad_v[j]);
}
for (int j = 0; j < Nelem; j++)
{
int attribute = j + 1;
mesh->AddQuad(quad_e[j], attribute);
}
mesh->FinalizeQuadMesh(1, 1, true);
}
// Set the space for the high-order mesh nodes.
H1_FECollection fec(order, mesh->Dimension());
FiniteElementSpace nodal_fes(mesh, &fec, mesh->SpaceDimension());
mesh->SetNodalFESpace(&nodal_fes);
// 3. Refine the mesh while snapping nodes to the sphere.
for (int l = 0; l <= ref_levels; l++)
{
if (l > 0) // for l == 0 just perform snapping
{
mesh->UniformRefinement();
}
// Snap the nodes of the refined mesh back to sphere surface.
if (always_snap || l == ref_levels)
{
SnapNodes(*mesh);
}
}
if (amr == 1)
{
Vertex target(0.0, 0.0, 1.0);
for (int l = 0; l < 5; l++)
{
mesh->RefineAtVertex(target);
}
SnapNodes(*mesh);
}
else if (amr == 2)
{
for (int l = 0; l < 4; l++)
{
mesh->RandomRefinement(0.5); // 50% probability
}
SnapNodes(*mesh);
}
// 4. Define a finite element space on the mesh. Here we use isoparametric
// finite elements -- the same as the mesh nodes.
FiniteElementSpace *fespace = new FiniteElementSpace(mesh, &fec);
cout << "Number of unknowns: " << fespace->GetTrueVSize() << endl;
// 5. Set up the linear form b(.) which corresponds to the right-hand side of
// the FEM linear system, which in this case is (1,phi_i) where phi_i are
// the basis functions in the finite element fespace.
LinearForm *b = new LinearForm(fespace);
ConstantCoefficient one(1.0);
FunctionCoefficient rhs_coef (analytic_rhs);
FunctionCoefficient sol_coef (analytic_solution);
b->AddDomainIntegrator(new DomainLFIntegrator(rhs_coef));
b->Assemble();
// 6. Define the solution vector x as a finite element grid function
// corresponding to fespace. Initialize x with initial guess of zero.
GridFunction x(fespace);
x = 0.0;
// 7. Set up the bilinear form a(.,.) on the finite element space
// corresponding to the Laplacian operator -Delta, by adding the Diffusion
// and Mass domain integrators.
BilinearForm *a = new BilinearForm(fespace);
a->AddDomainIntegrator(new DiffusionIntegrator(one));
a->AddDomainIntegrator(new MassIntegrator(one));
// 8. Assemble the linear system, apply conforming constraints, etc.
a->Assemble();
SparseMatrix A;
Vector B, X;
Array<int> empty_tdof_list;
a->FormLinearSystem(empty_tdof_list, x, *b, A, X, B);
#ifndef MFEM_USE_SUITESPARSE
// 9. Define a simple symmetric Gauss-Seidel preconditioner and use it to
// solve the system AX=B with PCG.
GSSmoother M(A);
PCG(A, M, B, X, 1, 200, 1e-12, 0.0);
#else
// 9. If MFEM was compiled with SuiteSparse, use UMFPACK to solve the system.
UMFPackSolver umf_solver;
umf_solver.Control[UMFPACK_ORDERING] = UMFPACK_ORDERING_METIS;
umf_solver.SetOperator(A);
umf_solver.Mult(B, X);
#endif
// 10. Recover the solution as a finite element grid function.
a->RecoverFEMSolution(X, *b, x);
// 11. Compute and print the L^2 norm of the error.
cout<<"\nL2 norm of error: " << x.ComputeL2Error(sol_coef) << endl;
// 12. Save the refined mesh and the solution. This output can be viewed
// later using GLVis: "glvis -m sphere_refined.mesh -g sol.gf".
{
ofstream mesh_ofs("sphere_refined.mesh");
mesh_ofs.precision(8);
mesh->Print(mesh_ofs);
ofstream sol_ofs("sol.gf");
sol_ofs.precision(8);
x.Save(sol_ofs);
}
// 13. Send the solution by socket to a GLVis server.
if (visualization)
{
char vishost[] = "localhost";
int visport = 19916;
socketstream sol_sock(vishost, visport);
sol_sock.precision(8);
sol_sock << "solution\n" << *mesh << x << flush;
}
// 14. Free the used memory.
delete a;
delete b;
delete fespace;
delete mesh;
return 0;
}
real_t analytic_solution(const Vector &x)
{
real_t l2 = x(0)*x(0) + x(1)*x(1) + x(2)*x(2);
return x(0)*x(1)/l2;
}
real_t analytic_rhs(const Vector &x)
{
real_t l2 = x(0)*x(0) + x(1)*x(1) + x(2)*x(2);
return 7*x(0)*x(1)/l2;
}
void SnapNodes(Mesh &mesh)
{
GridFunction &nodes = *mesh.GetNodes();
Vector node(mesh.SpaceDimension());
for (int i = 0; i < nodes.FESpace()->GetNDofs(); i++)
{
for (int d = 0; d < mesh.SpaceDimension(); d++)
{
node(d) = nodes(nodes.FESpace()->DofToVDof(i, d));
}
node /= node.Norml2();
for (int d = 0; d < mesh.SpaceDimension(); d++)
{
nodes(nodes.FESpace()->DofToVDof(i, d)) = node(d);
}
}
if (mesh.Nonconforming())
{
// Snap hanging nodes to the master side.
Vector tnodes;
nodes.GetTrueDofs(tnodes);
nodes.SetFromTrueDofs(tnodes);
}
}
|