1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
|
// MFEM Example 11 - Parallel Version
// PETSc Modification
//
// Compile with: make ex11p
//
// Sample runs: mpirun -np 4 ex11p -m ../../data/star.mesh
// mpirun -np 4 ex11p -m ../../data/star.mesh --slepcopts rc_ex11p_lobpcg
// mpirun -np 4 ex11p -m ../../data/star.mesh --slepcopts rc_ex11p_gd
//
// Description: This example code demonstrates the use of MFEM to solve the
// eigenvalue problem -Delta u = lambda u with homogeneous
// Dirichlet boundary conditions.
//
// We compute a number of the lowest eigenmodes by discretizing
// the Laplacian and Mass operators using a FE space of the
// specified order, or an isoparametric/isogeometric space if
// order < 1 (quadratic for quadratic curvilinear mesh, NURBS for
// NURBS mesh, etc.)
//
// The example demonstrates the use of the SLEPc eigensolver as an
// alternative to the LOBPCG eigenvalue solver. The shift and
// invert spectral transformation is used to help the convergence
// to the smaller eigenvalues. Alternative solver parameters can
// be passed in a file with "-slepcopts".
//
// Reusing a single GLVis visualization window for multiple
// eigenfunctions is also illustrated.
//
// We recommend viewing Example 1 before viewing this example.
#include "mfem.hpp"
#include <fstream>
#include <iostream>
#ifndef MFEM_USE_SLEPC
#error This examples requires that MFEM is build with MFEM_USE_SLEPC=YES
#endif
using namespace std;
using namespace mfem;
int main(int argc, char *argv[])
{
// 1. Initialize MPI and HYPRE.
Mpi::Init(argc, argv);
int num_procs = Mpi::WorldSize();
int myid = Mpi::WorldRank();
Hypre::Init();
// 2. Parse command-line options.
const char *mesh_file = "../../data/star.mesh";
int ser_ref_levels = 2;
int par_ref_levels = 1;
int order = 1;
int nev = 5;
int seed = 75;
bool slu_solver = false;
bool sp_solver = false;
bool visualization = 1;
bool use_slepc = true;
const char *slepcrc_file = "";
const char *device_config = "cpu";
OptionsParser args(argc, argv);
args.AddOption(&mesh_file, "-m", "--mesh",
"Mesh file to use.");
args.AddOption(&ser_ref_levels, "-rs", "--refine-serial",
"Number of times to refine the mesh uniformly in serial.");
args.AddOption(&par_ref_levels, "-rp", "--refine-parallel",
"Number of times to refine the mesh uniformly in parallel.");
args.AddOption(&order, "-o", "--order",
"Finite element order (polynomial degree) or -1 for"
" isoparametric space.");
args.AddOption(&nev, "-n", "--num-eigs",
"Number of desired eigenmodes.");
args.AddOption(&seed, "-s", "--seed",
"Random seed used to initialize LOBPCG.");
#ifdef MFEM_USE_SUPERLU
args.AddOption(&slu_solver, "-slu", "--superlu", "-no-slu",
"--no-superlu", "Use the SuperLU Solver.");
#endif
#ifdef MFEM_USE_STRUMPACK
args.AddOption(&sp_solver, "-sp", "--strumpack", "-no-sp",
"--no-strumpack", "Use the STRUMPACK Solver.");
#endif
args.AddOption(&visualization, "-vis", "--visualization", "-no-vis",
"--no-visualization",
"Enable or disable GLVis visualization.");
args.AddOption(&use_slepc, "-useslepc","--useslepc","-no-slepc",
"--no-slepc","Use or not SLEPc to solve the eigenvalue problem");
args.AddOption(&slepcrc_file, "-slepcopts", "--slepcopts",
"SlepcOptions file to use.");
args.AddOption(&device_config, "-d", "--device",
"Device configuration string, see Device::Configure().");
args.Parse();
if (slu_solver && sp_solver)
{
if (myid == 0)
cout << "WARNING: Both SuperLU and STRUMPACK have been selected,"
<< " please choose either one." << endl
<< " Defaulting to SuperLU." << endl;
sp_solver = false;
}
// The command line options are also passed to the STRUMPACK
// solver. So do not exit if some options are not recognized.
if (!sp_solver)
{
if (!args.Good())
{
if (myid == 0)
{
args.PrintUsage(cout);
}
return 1;
}
}
if (myid == 0)
{
args.PrintOptions(cout);
}
// 2b. Enable hardware devices such as GPUs, and programming models such as
// CUDA, OCCA, RAJA and OpenMP based on command line options.
Device device(device_config);
if (myid == 0) { device.Print(); }
// 2c. We initialize SLEPc. This internally initializes PETSc as well.
MFEMInitializeSlepc(NULL,NULL,slepcrc_file,NULL);
// 3. Read the (serial) mesh from the given mesh file on all processors. We
// can handle triangular, quadrilateral, tetrahedral, hexahedral, surface
// and volume meshes with the same code.
Mesh *mesh = new Mesh(mesh_file, 1, 1);
int dim = mesh->Dimension();
// 4. Refine the serial mesh on all processors to increase the resolution. In
// this example we do 'ref_levels' of uniform refinement (2 by default, or
// specified on the command line with -rs).
for (int lev = 0; lev < ser_ref_levels; lev++)
{
mesh->UniformRefinement();
}
// 5. Define a parallel mesh by a partitioning of the serial mesh. Refine
// this mesh further in parallel to increase the resolution (1 time by
// default, or specified on the command line with -rp). Once the parallel
// mesh is defined, the serial mesh can be deleted.
ParMesh *pmesh = new ParMesh(MPI_COMM_WORLD, *mesh);
delete mesh;
for (int lev = 0; lev < par_ref_levels; lev++)
{
pmesh->UniformRefinement();
}
// 6. Define a parallel finite element space on the parallel mesh. Here we
// use continuous Lagrange finite elements of the specified order. If
// order < 1, we instead use an isoparametric/isogeometric space.
FiniteElementCollection *fec;
if (order > 0)
{
fec = new H1_FECollection(order, dim);
}
else if (pmesh->GetNodes())
{
fec = pmesh->GetNodes()->OwnFEC();
}
else
{
fec = new H1_FECollection(order = 1, dim);
}
ParFiniteElementSpace *fespace = new ParFiniteElementSpace(pmesh, fec);
HYPRE_BigInt size = fespace->GlobalTrueVSize();
if (myid == 0)
{
cout << "Number of unknowns: " << size << endl;
}
// 7. Set up the parallel bilinear forms a(.,.) and m(.,.) on the finite
// element space. The first corresponds to the Laplacian operator -Delta,
// while the second is a simple mass matrix needed on the right hand side
// of the generalized eigenvalue problem below. The boundary conditions
// are implemented by elimination with special values on the diagonal to
// shift the Dirichlet eigenvalues out of the computational range. After
// serial and parallel assembly we extract the corresponding parallel
// matrices A and M.
ConstantCoefficient one(1.0);
Array<int> ess_bdr;
if (pmesh->bdr_attributes.Size())
{
ess_bdr.SetSize(pmesh->bdr_attributes.Max());
ess_bdr = 1;
}
ParBilinearForm *a = new ParBilinearForm(fespace);
a->AddDomainIntegrator(new DiffusionIntegrator(one));
if (pmesh->bdr_attributes.Size() == 0)
{
// Add a mass term if the mesh has no boundary, e.g. periodic mesh or
// closed surface.
a->AddDomainIntegrator(new MassIntegrator(one));
}
a->Assemble();
a->EliminateEssentialBCDiag(ess_bdr, 1.0);
a->Finalize();
ParBilinearForm *m = new ParBilinearForm(fespace);
m->AddDomainIntegrator(new MassIntegrator(one));
m->Assemble();
// shift the eigenvalue corresponding to eliminated dofs to a large value
m->EliminateEssentialBCDiag(ess_bdr, numeric_limits<real_t>::min());
m->Finalize();
PetscParMatrix *pA = NULL, *pM = NULL;
HypreParMatrix *A = NULL, *M = NULL;
Operator::Type tid =
!use_slepc ? Operator::Hypre_ParCSR : Operator::PETSC_MATAIJ;
OperatorHandle Ah(tid), Mh(tid);
a->ParallelAssemble(Ah);
if (!use_slepc) { Ah.Get(A); }
else { Ah.Get(pA); }
Ah.SetOperatorOwner(false);
m->ParallelAssemble(Mh);
if (!use_slepc) {Mh.Get(M); }
else {Mh.Get(pM); }
Mh.SetOperatorOwner(false);
#if defined(MFEM_USE_SUPERLU) || defined(MFEM_USE_STRUMPACK)
Operator * Arow = NULL;
#ifdef MFEM_USE_SUPERLU
if (slu_solver)
{
Arow = new SuperLURowLocMatrix(*A);
}
#endif
#ifdef MFEM_USE_STRUMPACK
if (sp_solver)
{
Arow = new STRUMPACKRowLocMatrix(*A);
}
#endif
#endif
delete a;
delete m;
// 8. Define and configure the LOBPCG eigensolver and the BoomerAMG
// preconditioner for A to be used within the solver. Set the matrices
// which define the generalized eigenproblem A x = lambda M x.
Solver * precond = NULL;
if (!use_slepc)
{
if (!slu_solver && !sp_solver)
{
HypreBoomerAMG * amg = new HypreBoomerAMG(*A);
amg->SetPrintLevel(0);
precond = amg;
}
else
{
#ifdef MFEM_USE_SUPERLU
if (slu_solver)
{
SuperLUSolver * superlu = new SuperLUSolver(MPI_COMM_WORLD);
superlu->SetPrintStatistics(false);
superlu->SetSymmetricPattern(true);
superlu->SetColumnPermutation(superlu::PARMETIS);
superlu->SetOperator(*Arow);
precond = superlu;
}
#endif
#ifdef MFEM_USE_STRUMPACK
if (sp_solver)
{
STRUMPACKSolver * strumpack = new STRUMPACKSolver(MPI_COMM_WORLD, argc, argv);
strumpack->SetPrintFactorStatistics(true);
strumpack->SetPrintSolveStatistics(false);
strumpack->SetKrylovSolver(strumpack::KrylovSolver::DIRECT);
strumpack->SetReorderingStrategy(strumpack::ReorderingStrategy::METIS);
strumpack->SetMatching(strumpack::MatchingJob::NONE);
strumpack->SetCompression(strumpack::CompressionType::NONE);
strumpack->SetOperator(*Arow);
strumpack->SetFromCommandLine();
precond = strumpack;
}
#endif
}
}
HypreLOBPCG * lobpcg = NULL;
SlepcEigenSolver * slepc = NULL;
if (!use_slepc)
{
lobpcg = new HypreLOBPCG(MPI_COMM_WORLD);
lobpcg->SetNumModes(nev);
lobpcg->SetRandomSeed(seed);
lobpcg->SetPreconditioner(*precond);
lobpcg->SetMaxIter(200);
lobpcg->SetTol(1e-8);
lobpcg->SetPrecondUsageMode(1);
lobpcg->SetPrintLevel(1);
lobpcg->SetMassMatrix(*M);
lobpcg->SetOperator(*A);
}
else
{
slepc = new SlepcEigenSolver(MPI_COMM_WORLD);
slepc->SetNumModes(nev);
slepc->SetWhichEigenpairs(SlepcEigenSolver::TARGET_REAL);
slepc->SetTarget(0.0);
slepc->SetSpectralTransformation(SlepcEigenSolver::SHIFT_INVERT);
slepc->SetOperators(*pA,*pM);
}
// 9. Compute the eigenmodes and extract the array of eigenvalues. Define a
// parallel grid function to represent each of the eigenmodes returned by
// the solver.
Array<real_t> eigenvalues;
if (!use_slepc)
{
lobpcg->Solve();
lobpcg->GetEigenvalues(eigenvalues);
}
else
{
slepc->Solve();
eigenvalues.SetSize(nev);
for (int i=0; i<nev; i++)
{
slepc->GetEigenvalue(i,eigenvalues[i]);
}
}
Vector temp(fespace->GetTrueVSize());
ParGridFunction x(fespace);
// 10. Save the refined mesh and the modes in parallel. This output can be
// viewed later using GLVis: "glvis -np <np> -m mesh -g mode".
{
ostringstream mesh_name, mode_name;
mesh_name << "mesh." << setfill('0') << setw(6) << myid;
ofstream mesh_ofs(mesh_name.str().c_str());
mesh_ofs.precision(8);
pmesh->Print(mesh_ofs);
for (int i=0; i<nev; i++)
{
// convert eigenvector from HypreParVector to ParGridFunction
if (!use_slepc)
{
x = lobpcg->GetEigenvector(i);
}
else
{
slepc->GetEigenvector(i,temp);
x.Distribute(temp);
}
mode_name << "mode_" << setfill('0') << setw(2) << i << "."
<< setfill('0') << setw(6) << myid;
ofstream mode_ofs(mode_name.str().c_str());
mode_ofs.precision(8);
x.Save(mode_ofs);
mode_name.str("");
}
}
// 11. Send the solution by socket to a GLVis server.
if (visualization)
{
char vishost[] = "localhost";
int visport = 19916;
socketstream mode_sock(vishost, visport);
mode_sock.precision(8);
for (int i=0; i<nev; i++)
{
if ( myid == 0 )
{
cout << "Eigenmode " << i+1 << '/' << nev
<< ", Lambda = " << eigenvalues[i] << endl;
}
// convert eigenvector from HypreParVector to ParGridFunction
if (!use_slepc)
{
x = lobpcg->GetEigenvector(i);
}
else
{
slepc->GetEigenvector(i,temp);
x.Distribute(temp);
}
mode_sock << "parallel " << num_procs << " " << myid << "\n"
<< "solution\n" << *pmesh << x << flush
<< "window_title 'Eigenmode " << i+1 << '/' << nev
<< ", Lambda = " << eigenvalues[i] << "'" << endl;
char c;
if (myid == 0)
{
cout << "press (q)uit or (c)ontinue --> " << flush;
cin >> c;
}
MPI_Bcast(&c, 1, MPI_CHAR, 0, MPI_COMM_WORLD);
if (c != 'c')
{
break;
}
}
mode_sock.close();
}
// 12. Free the used memory.
delete lobpcg;
delete slepc;
delete precond;
delete M;
delete A;
delete pA;
delete pM;
#if defined(MFEM_USE_SUPERLU) || defined(MFEM_USE_STRUMPACK)
delete Arow;
#endif
delete fespace;
if (order > 0)
{
delete fec;
}
delete pmesh;
// We finalize SLEPc
MFEMFinalizeSlepc();
return 0;
}
|