1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
|
// MFEM Example 5 - Parallel Version
// PETSc Modification
//
// Compile with: make ex5p
//
// Sample runs:
// mpirun -np 4 ex5p -m ../../data/beam-tet.mesh --petscopts rc_ex5p_fieldsplit
// mpirun -np 4 ex5p -m ../../data/star.mesh --petscopts rc_ex5p_bddc --nonoverlapping
//
// Description: This example code solves a simple 2D/3D mixed Darcy problem
// corresponding to the saddle point system
// k*u + grad p = f
// - div u = g
// with natural boundary condition -p = <given pressure>.
// Here, we use a given exact solution (u,p) and compute the
// corresponding r.h.s. (f,g). We discretize with Raviart-Thomas
// finite elements (velocity u) and piecewise discontinuous
// polynomials (pressure p).
//
// The example demonstrates the use of the BlockOperator class, as
// well as the collective saving of several grid functions in a
// VisIt (visit.llnl.gov) visualization format.
//
// Two types of PETSc solvers can be used: BDDC or fieldsplit.
// When using BDDC, the nonoverlapping assembly feature should be
// used. This specific example needs PETSc compiled with support
// for SuiteSparse and/or MUMPS for using BDDC.
//
// We recommend viewing examples 1-4 before viewing this example.
#include "mfem.hpp"
#include <fstream>
#include <iostream>
#ifndef MFEM_USE_PETSC
#error This example requires that MFEM is built with MFEM_USE_PETSC=YES
#endif
using namespace std;
using namespace mfem;
// Define the analytical solution and forcing terms / boundary conditions
void uFun_ex(const Vector & x, Vector & u);
real_t pFun_ex(const Vector & x);
void fFun(const Vector & x, Vector & f);
real_t gFun(const Vector & x);
real_t f_natural(const Vector & x);
int main(int argc, char *argv[])
{
StopWatch chrono;
// 1. Initialize MPI and HYPRE.
Mpi::Init(argc, argv);
int num_procs = Mpi::WorldSize();
int myid = Mpi::WorldRank();
Hypre::Init();
bool verbose = (myid == 0);
// 2. Parse command-line options.
const char *mesh_file = "../../data/star.mesh";
int order = 1;
bool par_format = false;
bool visualization = 1;
bool use_petsc = true;
bool use_nonoverlapping = false;
bool local_bdr_spec = false;
const char *petscrc_file = "";
OptionsParser args(argc, argv);
args.AddOption(&mesh_file, "-m", "--mesh",
"Mesh file to use.");
args.AddOption(&order, "-o", "--order",
"Finite element order (polynomial degree).");
args.AddOption(&par_format, "-pf", "--parallel-format", "-sf",
"--serial-format",
"Format to use when saving the results for VisIt.");
args.AddOption(&visualization, "-vis", "--visualization", "-no-vis",
"--no-visualization",
"Enable or disable GLVis visualization.");
args.AddOption(&use_petsc, "-usepetsc", "--usepetsc", "-no-petsc",
"--no-petsc",
"Use or not PETSc to solve the linear system.");
args.AddOption(&petscrc_file, "-petscopts", "--petscopts",
"PetscOptions file to use.");
args.AddOption(&use_nonoverlapping, "-nonoverlapping", "--nonoverlapping",
"-no-nonoverlapping", "--no-nonoverlapping",
"Use or not the block diagonal PETSc's matrix format "
"for non-overlapping domain decomposition.");
args.AddOption(&local_bdr_spec, "-local-bdr", "--local-bdr", "-no-local-bdr",
"--no-local-bdr",
"Specify boundary dofs in local (Vdofs) ordering.");
args.Parse();
if (!args.Good())
{
if (verbose)
{
args.PrintUsage(cout);
}
return 1;
}
if (verbose)
{
args.PrintOptions(cout);
}
// 2b. We initialize PETSc
if (use_petsc) { MFEMInitializePetsc(NULL,NULL,petscrc_file,NULL); }
// 3. Read the (serial) mesh from the given mesh file on all processors. We
// can handle triangular, quadrilateral, tetrahedral, hexahedral, surface
// and volume meshes with the same code.
Mesh *mesh = new Mesh(mesh_file, 1, 1);
int dim = mesh->Dimension();
// 4. Refine the serial mesh on all processors to increase the resolution. In
// this example we do 'ref_levels' of uniform refinement. We choose
// 'ref_levels' to be the largest number that gives a final mesh with no
// more than 10,000 elements.
{
int ref_levels =
(int)floor(log(10000./mesh->GetNE())/log(2.)/dim);
for (int l = 0; l < ref_levels; l++)
{
mesh->UniformRefinement();
}
}
// 5. Define a parallel mesh by a partitioning of the serial mesh. Refine
// this mesh further in parallel to increase the resolution. Once the
// parallel mesh is defined, the serial mesh can be deleted.
ParMesh *pmesh = new ParMesh(MPI_COMM_WORLD, *mesh);
delete mesh;
{
int par_ref_levels = 2;
for (int l = 0; l < par_ref_levels; l++)
{
pmesh->UniformRefinement();
}
}
// 6. Define a parallel finite element space on the parallel mesh. Here we
// use the Raviart-Thomas finite elements of the specified order.
FiniteElementCollection *hdiv_coll(new RT_FECollection(order, dim));
FiniteElementCollection *l2_coll(new L2_FECollection(order, dim));
ParFiniteElementSpace *R_space = new ParFiniteElementSpace(pmesh, hdiv_coll);
ParFiniteElementSpace *W_space = new ParFiniteElementSpace(pmesh, l2_coll);
HYPRE_BigInt dimR = R_space->GlobalTrueVSize();
HYPRE_BigInt dimW = W_space->GlobalTrueVSize();
if (verbose)
{
std::cout << "***********************************************************\n";
std::cout << "dim(R) = " << dimR << "\n";
std::cout << "dim(W) = " << dimW << "\n";
std::cout << "dim(R+W) = " << dimR + dimW << "\n";
std::cout << "***********************************************************\n";
}
// 7. Define the two BlockStructure of the problem. block_offsets is used
// for Vector based on dof (like ParGridFunction or ParLinearForm),
// block_trueOffstes is used for Vector based on trueDof (HypreParVector
// for the rhs and solution of the linear system). The offsets computed
// here are local to the processor.
Array<int> block_offsets(3); // number of variables + 1
block_offsets[0] = 0;
block_offsets[1] = R_space->GetVSize();
block_offsets[2] = W_space->GetVSize();
block_offsets.PartialSum();
Array<int> block_trueOffsets(3); // number of variables + 1
block_trueOffsets[0] = 0;
block_trueOffsets[1] = R_space->TrueVSize();
block_trueOffsets[2] = W_space->TrueVSize();
block_trueOffsets.PartialSum();
// 8. Define the coefficients, analytical solution, and rhs of the PDE.
ConstantCoefficient k(1.0);
VectorFunctionCoefficient fcoeff(dim, fFun);
FunctionCoefficient fnatcoeff(f_natural);
FunctionCoefficient gcoeff(gFun);
VectorFunctionCoefficient ucoeff(dim, uFun_ex);
FunctionCoefficient pcoeff(pFun_ex);
// 9. Define the parallel grid function and parallel linear forms, solution
// vector and rhs.
BlockVector x(block_offsets), rhs(block_offsets);
BlockVector trueX(block_trueOffsets), trueRhs(block_trueOffsets);
ParLinearForm *fform(new ParLinearForm);
fform->Update(R_space, rhs.GetBlock(0), 0);
fform->AddDomainIntegrator(new VectorFEDomainLFIntegrator(fcoeff));
fform->AddBoundaryIntegrator(new VectorFEBoundaryFluxLFIntegrator(fnatcoeff));
fform->Assemble();
fform->ParallelAssemble(trueRhs.GetBlock(0));
ParLinearForm *gform(new ParLinearForm);
gform->Update(W_space, rhs.GetBlock(1), 0);
gform->AddDomainIntegrator(new DomainLFIntegrator(gcoeff));
gform->Assemble();
gform->ParallelAssemble(trueRhs.GetBlock(1));
// 10. Assemble the finite element matrices for the Darcy operator
//
// D = [ M B^T ]
// [ B 0 ]
// where:
//
// M = \int_\Omega k u_h \cdot v_h d\Omega u_h, v_h \in R_h
// B = -\int_\Omega \div u_h q_h d\Omega u_h \in R_h, q_h \in W_h
ParBilinearForm *mVarf(new ParBilinearForm(R_space));
ParMixedBilinearForm *bVarf(new ParMixedBilinearForm(R_space, W_space));
PetscParMatrix *pM = NULL, *pB = NULL, *pBT = NULL;
HypreParMatrix *M = NULL, *B = NULL, *BT = NULL;
Operator::Type tid =
!use_petsc ? Operator::Hypre_ParCSR :
(use_nonoverlapping ? Operator::PETSC_MATIS : Operator::PETSC_MATAIJ);
OperatorHandle Mh(tid), Bh(tid);
mVarf->AddDomainIntegrator(new VectorFEMassIntegrator(k));
mVarf->Assemble();
mVarf->Finalize();
mVarf->ParallelAssemble(Mh);
if (!use_petsc) { Mh.Get(M); }
else { Mh.Get(pM); }
Mh.SetOperatorOwner(false);
bVarf->AddDomainIntegrator(new VectorFEDivergenceIntegrator);
bVarf->Assemble();
bVarf->Finalize();
if (!use_petsc)
{
B = bVarf->ParallelAssemble();
(*B) *= -1;
}
else
{
bVarf->ParallelAssemble(Bh);
Bh.Get(pB);
Bh.SetOperatorOwner(false);
(*pB) *= -1;
}
if (!use_petsc) { BT = B->Transpose(); }
else { pBT = pB->Transpose(); };
Operator *darcyOp = NULL;
if (!use_petsc)
{
BlockOperator *tdarcyOp = new BlockOperator(block_trueOffsets);
tdarcyOp->SetBlock(0,0,M);
tdarcyOp->SetBlock(0,1,BT);
tdarcyOp->SetBlock(1,0,B);
darcyOp = tdarcyOp;
}
else
{
// We construct the BlockOperator and we then convert it to a
// PetscParMatrix to avoid any conversion in the construction of the
// preconditioners.
BlockOperator *tdarcyOp = new BlockOperator(block_trueOffsets);
tdarcyOp->SetBlock(0,0,pM);
tdarcyOp->SetBlock(0,1,pBT);
tdarcyOp->SetBlock(1,0,pB);
darcyOp = new PetscParMatrix(pM->GetComm(),tdarcyOp,
use_nonoverlapping ? Operator::PETSC_MATIS :
Operator::PETSC_MATAIJ);
delete tdarcyOp;
}
// 11. Construct the operators for preconditioner
//
// P = [ diag(M) 0 ]
// [ 0 B diag(M)^-1 B^T ]
//
// Here we use Symmetric Gauss-Seidel to approximate the inverse of the
// pressure Schur Complement.
PetscPreconditioner *pdarcyPr = NULL;
BlockDiagonalPreconditioner *darcyPr = NULL;
HypreSolver *invM = NULL, *invS = NULL;
HypreParMatrix *S = NULL;
HypreParMatrix *MinvBt = NULL;
HypreParVector *Md = NULL;
if (!use_petsc)
{
MinvBt = B->Transpose();
Md = new HypreParVector(MPI_COMM_WORLD, M->GetGlobalNumRows(),
M->GetRowStarts());
M->GetDiag(*Md);
MinvBt->InvScaleRows(*Md);
S = ParMult(B, MinvBt);
invM = new HypreDiagScale(*M);
invS = new HypreBoomerAMG(*S);
invM->iterative_mode = false;
invS->iterative_mode = false;
darcyPr = new BlockDiagonalPreconditioner(block_trueOffsets);
darcyPr->SetDiagonalBlock(0, invM);
darcyPr->SetDiagonalBlock(1, invS);
}
else
{
if (use_nonoverlapping)
{
PetscBDDCSolverParams opts;
// For saddle point problems, we need to provide BDDC the list of
// boundary dofs either essential or natural.
// Since R_space is the only space that may have boundary dofs and it
// is ordered first then W_space, we don't need any local offset when
// specifying the dofs.
Array<int> bdr_tdof_list;
if (pmesh->bdr_attributes.Size())
{
Array<int> bdr(pmesh->bdr_attributes.Max());
bdr = 1;
if (!local_bdr_spec)
{
// Essential dofs in global ordering
R_space->GetEssentialTrueDofs(bdr, bdr_tdof_list);
}
else
{
// Alternatively, you can also provide the list of dofs in local
// ordering
R_space->GetEssentialVDofs(bdr, bdr_tdof_list);
bdr_tdof_list.SetSize(R_space->GetVSize()+W_space->GetVSize(),0);
}
opts.SetNatBdrDofs(&bdr_tdof_list,local_bdr_spec);
}
else
{
MFEM_WARNING("Missing boundary dofs. This may cause solver failures.");
}
// See also command line options rc_ex5p_bddc
pdarcyPr = new PetscBDDCSolver(MPI_COMM_WORLD,*darcyOp,opts,"prec_");
}
else
{
// With PETSc, we can construct the (same) block-diagonal solver with
// command line options (see rc_ex5p_fieldsplit)
pdarcyPr = new PetscFieldSplitSolver(MPI_COMM_WORLD,*darcyOp,"prec_");
}
}
// 12. Solve the linear system with MINRES.
// Check the norm of the unpreconditioned residual.
int maxIter(500);
real_t rtol(1.e-6);
real_t atol(1.e-10);
chrono.Clear();
chrono.Start();
trueX = 0.0;
if (!use_petsc)
{
MINRESSolver solver(MPI_COMM_WORLD);
solver.SetAbsTol(atol);
solver.SetRelTol(rtol);
solver.SetMaxIter(maxIter);
solver.SetOperator(*darcyOp);
solver.SetPreconditioner(*darcyPr);
solver.SetPrintLevel(1);
solver.Mult(trueRhs, trueX);
if (verbose)
{
if (solver.GetConverged())
{
std::cout << "MINRES converged in " << solver.GetNumIterations()
<< " iterations with a residual norm of "
<< solver.GetFinalNorm() << ".\n";
}
else
{
std::cout << "MINRES did not converge in "
<< solver.GetNumIterations()
<< " iterations. Residual norm is "
<< solver.GetFinalNorm() << ".\n";
}
std::cout << "MINRES solver took " << chrono.RealTime() << "s. \n";
}
}
else
{
std::string solvertype;
PetscLinearSolver *solver;
if (use_nonoverlapping)
{
// We can use conjugate gradients to solve the problem
solver = new PetscPCGSolver(MPI_COMM_WORLD);
solvertype = "PCG";
}
else
{
solver = new PetscLinearSolver(MPI_COMM_WORLD);
solvertype = "MINRES";
}
solver->SetOperator(*darcyOp);
solver->SetPreconditioner(*pdarcyPr);
solver->SetAbsTol(atol);
solver->SetRelTol(rtol);
solver->SetMaxIter(maxIter);
solver->SetPrintLevel(2);
solver->Mult(trueRhs, trueX);
if (verbose)
{
if (solver->GetConverged())
{
std::cout << solvertype << " converged in "
<< solver->GetNumIterations()
<< " iterations with a residual norm of "
<< solver->GetFinalNorm() << ".\n";
}
else
{
std::cout << solvertype << " did not converge in "
<< solver->GetNumIterations()
<< " iterations. Residual norm is "
<< solver->GetFinalNorm() << ".\n";
}
std::cout << solvertype << " solver took "
<< chrono.RealTime() << "s. \n";
}
delete solver;
}
chrono.Stop();
// 13. Extract the parallel grid function corresponding to the finite element
// approximation X. This is the local solution on each processor. Compute
// L2 error norms.
ParGridFunction *u(new ParGridFunction);
ParGridFunction *p(new ParGridFunction);
u->MakeRef(R_space, x.GetBlock(0), 0);
p->MakeRef(W_space, x.GetBlock(1), 0);
u->Distribute(&(trueX.GetBlock(0)));
p->Distribute(&(trueX.GetBlock(1)));
int order_quad = max(2, 2*order+1);
const IntegrationRule *irs[Geometry::NumGeom];
for (int i=0; i < Geometry::NumGeom; ++i)
{
irs[i] = &(IntRules.Get(i, order_quad));
}
real_t err_u = u->ComputeL2Error(ucoeff, irs);
real_t norm_u = ComputeGlobalLpNorm(2, ucoeff, *pmesh, irs);
real_t err_p = p->ComputeL2Error(pcoeff, irs);
real_t norm_p = ComputeGlobalLpNorm(2, pcoeff, *pmesh, irs);
if (verbose)
{
std::cout << "|| u_h - u_ex || / || u_ex || = " << err_u / norm_u << "\n";
std::cout << "|| p_h - p_ex || / || p_ex || = " << err_p / norm_p << "\n";
}
// 14. Save the refined mesh and the solution in parallel. This output can be
// viewed later using GLVis: "glvis -np <np> -m mesh -g sol_*".
{
ostringstream mesh_name, u_name, p_name;
mesh_name << "mesh." << setfill('0') << setw(6) << myid;
u_name << "sol_u." << setfill('0') << setw(6) << myid;
p_name << "sol_p." << setfill('0') << setw(6) << myid;
ofstream mesh_ofs(mesh_name.str().c_str());
mesh_ofs.precision(8);
pmesh->Print(mesh_ofs);
ofstream u_ofs(u_name.str().c_str());
u_ofs.precision(8);
u->Save(u_ofs);
ofstream p_ofs(p_name.str().c_str());
p_ofs.precision(8);
p->Save(p_ofs);
}
// 15. Save data in the VisIt format
VisItDataCollection visit_dc("Example5-Parallel", pmesh);
visit_dc.RegisterField("velocity", u);
visit_dc.RegisterField("pressure", p);
visit_dc.SetFormat(!par_format ?
DataCollection::SERIAL_FORMAT :
DataCollection::PARALLEL_FORMAT);
visit_dc.Save();
// 16. Send the solution by socket to a GLVis server.
if (visualization)
{
char vishost[] = "localhost";
int visport = 19916;
socketstream u_sock(vishost, visport);
u_sock << "parallel " << num_procs << " " << myid << "\n";
u_sock.precision(8);
u_sock << "solution\n" << *pmesh << *u << "window_title 'Velocity'"
<< endl;
// Make sure all ranks have sent their 'u' solution before initiating
// another set of GLVis connections (one from each rank):
MPI_Barrier(pmesh->GetComm());
socketstream p_sock(vishost, visport);
p_sock << "parallel " << num_procs << " " << myid << "\n";
p_sock.precision(8);
p_sock << "solution\n" << *pmesh << *p << "window_title 'Pressure'"
<< endl;
}
// 17. Free the used memory.
delete fform;
delete gform;
delete u;
delete p;
delete darcyOp;
delete darcyPr;
delete pdarcyPr;
delete invM;
delete invS;
delete S;
delete BT;
delete B;
delete M;
delete pBT;
delete pB;
delete pM;
delete MinvBt;
delete Md;
delete mVarf;
delete bVarf;
delete W_space;
delete R_space;
delete l2_coll;
delete hdiv_coll;
delete pmesh;
// We finalize PETSc
if (use_petsc) { MFEMFinalizePetsc(); }
return 0;
}
void uFun_ex(const Vector & x, Vector & u)
{
real_t xi(x(0));
real_t yi(x(1));
real_t zi(0.0);
if (x.Size() == 3)
{
zi = x(2);
}
u(0) = - exp(xi)*sin(yi)*cos(zi);
u(1) = - exp(xi)*cos(yi)*cos(zi);
if (x.Size() == 3)
{
u(2) = exp(xi)*sin(yi)*sin(zi);
}
}
// Change if needed
real_t pFun_ex(const Vector & x)
{
real_t xi(x(0));
real_t yi(x(1));
real_t zi(0.0);
if (x.Size() == 3)
{
zi = x(2);
}
return exp(xi)*sin(yi)*cos(zi);
}
void fFun(const Vector & x, Vector & f)
{
f = 0.0;
}
real_t gFun(const Vector & x)
{
if (x.Size() == 3)
{
return -pFun_ex(x);
}
else
{
return 0;
}
}
real_t f_natural(const Vector & x)
{
return (-pFun_ex(x));
}
|