1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
|
// MFEM Example 6 - Parallel Version
// PETSc Modification
//
// Compile with: make ex6p
//
// Sample runs:
// mpirun -np 4 ex6p -m ../../data/amr-quad.mesh
// mpirun -np 4 ex6p -m ../../data/amr-quad.mesh -nonoverlapping
//
// Description: This is a version of Example 1 with a simple adaptive mesh
// refinement loop. The problem being solved is again the Laplace
// equation -Delta u = 1 with homogeneous Dirichlet boundary
// conditions. The problem is solved on a sequence of meshes which
// are locally refined in a conforming (triangles, tetrahedrons)
// or non-conforming (quadrilaterals, hexahedra) manner according
// to a simple ZZ error estimator.
//
// The example demonstrates MFEM's capability to work with both
// conforming and nonconforming refinements, in 2D and 3D, on
// linear, curved and surface meshes. Interpolation of functions
// from coarse to fine meshes, as well as persistent GLVis
// visualization are also illustrated.
//
// PETSc assembly timings can be benchmarked if requested by
// command line.
//
// We recommend viewing Example 1 before viewing this example.
#include "mfem.hpp"
#include <fstream>
#include <iostream>
#ifndef MFEM_USE_PETSC
#error This example requires that MFEM is built with MFEM_USE_PETSC=YES
#endif
using namespace std;
using namespace mfem;
int main(int argc, char *argv[])
{
// 1. Initialize MPI and HYPRE.
Mpi::Init(argc, argv);
int num_procs = Mpi::WorldSize();
int myid = Mpi::WorldRank();
Hypre::Init();
// 2. Parse command-line options.
const char *mesh_file = "../../data/star.mesh";
int order = 1;
bool visualization = true;
int max_dofs = 100000;
bool use_petsc = true;
const char *petscrc_file = "";
bool use_nonoverlapping = false;
OptionsParser args(argc, argv);
args.AddOption(&mesh_file, "-m", "--mesh",
"Mesh file to use.");
args.AddOption(&order, "-o", "--order",
"Finite element order (polynomial degree).");
args.AddOption(&visualization, "-vis", "--visualization", "-no-vis",
"--no-visualization",
"Enable or disable GLVis visualization.");
args.AddOption(&max_dofs, "-md", "--max_dofs",
"Maximum number of dofs.");
args.AddOption(&use_petsc, "-usepetsc", "--usepetsc", "-no-petsc",
"--no-petsc",
"Use or not PETSc to solve the linear system.");
args.AddOption(&petscrc_file, "-petscopts", "--petscopts",
"PetscOptions file to use.");
args.AddOption(&use_nonoverlapping, "-nonoverlapping", "--nonoverlapping",
"-no-nonoverlapping", "--no-nonoverlapping",
"Use or not the block diagonal PETSc's matrix format "
"for non-overlapping domain decomposition.");
args.Parse();
if (!args.Good())
{
if (myid == 0)
{
args.PrintUsage(cout);
}
return 1;
}
if (myid == 0)
{
args.PrintOptions(cout);
}
// 2b. We initialize PETSc
if (use_petsc) { MFEMInitializePetsc(NULL,NULL,petscrc_file,NULL); }
// 3. Read the (serial) mesh from the given mesh file on all processors. We
// can handle triangular, quadrilateral, tetrahedral, hexahedral, surface
// and volume meshes with the same code.
Mesh *mesh = new Mesh(mesh_file, 1, 1);
int dim = mesh->Dimension();
int sdim = mesh->SpaceDimension();
// 4. Refine the serial mesh on all processors to increase the resolution.
// Also project a NURBS mesh to a piecewise-quadratic curved mesh. Make
// sure that the mesh is non-conforming.
if (mesh->NURBSext)
{
mesh->UniformRefinement();
mesh->SetCurvature(2);
}
mesh->EnsureNCMesh();
// 5. Define a parallel mesh by partitioning the serial mesh.
// Once the parallel mesh is defined, the serial mesh can be deleted.
ParMesh pmesh(MPI_COMM_WORLD, *mesh);
delete mesh;
MFEM_VERIFY(pmesh.bdr_attributes.Size() > 0,
"Boundary attributes required in the mesh.");
Array<int> ess_bdr(pmesh.bdr_attributes.Max());
ess_bdr = 1;
// 6. Define a finite element space on the mesh. The polynomial order is
// one (linear) by default, but this can be changed on the command line.
H1_FECollection fec(order, dim);
ParFiniteElementSpace fespace(&pmesh, &fec);
// 7. As in Example 1p, we set up bilinear and linear forms corresponding to
// the Laplace problem -\Delta u = 1. We don't assemble the discrete
// problem yet, this will be done in the main loop.
ParBilinearForm a(&fespace);
ParLinearForm b(&fespace);
ConstantCoefficient one(1.0);
BilinearFormIntegrator *integ = new DiffusionIntegrator(one);
a.AddDomainIntegrator(integ);
b.AddDomainIntegrator(new DomainLFIntegrator(one));
// 8. The solution vector x and the associated finite element grid function
// will be maintained over the AMR iterations. We initialize it to zero.
ParGridFunction x(&fespace);
x = 0;
// 9. Connect to GLVis.
char vishost[] = "localhost";
int visport = 19916;
socketstream sout;
if (visualization)
{
sout.open(vishost, visport);
if (!sout)
{
if (myid == 0)
{
cout << "Unable to connect to GLVis server at "
<< vishost << ':' << visport << endl;
cout << "GLVis visualization disabled.\n";
}
visualization = false;
}
sout.precision(8);
}
// 10. Set up an error estimator. Here we use the Zienkiewicz-Zhu estimator
// with L2 projection in the smoothing step to better handle hanging
// nodes and parallel partitioning. We need to supply a space for the
// discontinuous flux (L2) and a space for the smoothed flux (H(div) is
// used here).
L2_FECollection flux_fec(order, dim);
ParFiniteElementSpace flux_fes(&pmesh, &flux_fec, sdim);
RT_FECollection smooth_flux_fec(order-1, dim);
ParFiniteElementSpace smooth_flux_fes(&pmesh, &smooth_flux_fec);
// Another possible option for the smoothed flux space:
// H1_FECollection smooth_flux_fec(order, dim);
// ParFiniteElementSpace smooth_flux_fes(&pmesh, &smooth_flux_fec, dim);
L2ZienkiewiczZhuEstimator estimator(*integ, x, flux_fes, smooth_flux_fes);
// 11. A refiner selects and refines elements based on a refinement strategy.
// The strategy here is to refine elements with errors larger than a
// fraction of the maximum element error. Other strategies are possible.
// The refiner will call the given error estimator.
ThresholdRefiner refiner(estimator);
refiner.SetTotalErrorFraction(0.7);
// 12. The main AMR loop. In each iteration we solve the problem on the
// current mesh, visualize the solution, and refine the mesh.
for (int it = 0; ; it++)
{
HYPRE_BigInt global_dofs = fespace.GlobalTrueVSize();
if (myid == 0)
{
cout << "\nAMR iteration " << it << endl;
cout << "Number of unknowns: " << global_dofs << endl;
}
// 13. Assemble the stiffness matrix and the right-hand side. Note that
// MFEM doesn't care at this point that the mesh is nonconforming
// and parallel. The FE space is considered 'cut' along hanging
// edges/faces, and also across processor boundaries.
a.Assemble();
b.Assemble();
// 14. Create the parallel linear system: eliminate boundary conditions,
// constrain hanging nodes and nodes across processor boundaries.
// The system will be solved for true (unconstrained/unique) DOFs only.
Array<int> ess_tdof_list;
fespace.GetEssentialTrueDofs(ess_bdr, ess_tdof_list);
real_t time;
const int copy_interior = 1;
if (use_petsc)
{
a.SetOperatorType(use_nonoverlapping ?
Operator::PETSC_MATIS : Operator::PETSC_MATAIJ);
PetscParMatrix pA;
Vector pX,pB;
MPI_Barrier(MPI_COMM_WORLD);
time = -MPI_Wtime();
a.FormLinearSystem(ess_tdof_list, x, b, pA, pX, pB, copy_interior);
MPI_Barrier(MPI_COMM_WORLD);
time += MPI_Wtime();
if (myid == 0) { cout << "PETSc assembly timing : " << time << endl; }
}
a.Assemble();
b.Assemble();
a.SetOperatorType(Operator::Hypre_ParCSR);
HypreParMatrix A;
Vector B, X;
MPI_Barrier(MPI_COMM_WORLD);
time = -MPI_Wtime();
a.FormLinearSystem(ess_tdof_list, x, b, A, X, B, copy_interior);
MPI_Barrier(MPI_COMM_WORLD);
time += MPI_Wtime();
if (myid == 0) { cout << "HYPRE assembly timing : " << time << endl; }
// 15. Define and apply a parallel PCG solver for AX=B with the BoomerAMG
// preconditioner from hypre.
HypreBoomerAMG amg;
amg.SetPrintLevel(0);
CGSolver pcg(A.GetComm());
pcg.SetPreconditioner(amg);
pcg.SetOperator(A);
pcg.SetRelTol(1e-6);
pcg.SetMaxIter(200);
pcg.SetPrintLevel(3); // print the first and the last iterations only
pcg.Mult(B, X);
// 16. Extract the parallel grid function corresponding to the finite element
// approximation X. This is the local solution on each processor.
a.RecoverFEMSolution(X, b, x);
// 17. Send the solution by socket to a GLVis server.
if (visualization)
{
sout << "parallel " << num_procs << " " << myid << "\n";
sout << "solution\n" << pmesh << x << flush;
}
if (global_dofs > max_dofs)
{
if (myid == 0)
{
cout << "Reached the maximum number of dofs. Stop." << endl;
}
// we need to call Update here to delete any internal PETSc object that
// have been created by the ParBilinearForm; otherwise, these objects
// will be destroyed at the end of the main scope, when PETSc has been
// already finalized.
a.Update();
b.Update();
break;
}
// 18. Call the refiner to modify the mesh. The refiner calls the error
// estimator to obtain element errors, then it selects elements to be
// refined and finally it modifies the mesh. The Stop() method can be
// used to determine if a stopping criterion was met.
refiner.Apply(pmesh);
if (refiner.Stop())
{
if (myid == 0)
{
cout << "Stopping criterion satisfied. Stop." << endl;
}
a.Update();
b.Update();
break;
}
// 19. Update the finite element space (recalculate the number of DOFs,
// etc.) and create a grid function update matrix. Apply the matrix
// to any GridFunctions over the space. In this case, the update
// matrix is an interpolation matrix so the updated GridFunction will
// still represent the same function as before refinement.
fespace.Update();
x.Update();
// 20. Load balance the mesh, and update the space and solution. Currently
// available only for nonconforming meshes.
if (pmesh.Nonconforming())
{
pmesh.Rebalance();
// Update the space and the GridFunction. This time the update matrix
// redistributes the GridFunction among the processors.
fespace.Update();
x.Update();
}
// 21. Inform also the bilinear and linear forms that the space has
// changed.
a.Update();
b.Update();
}
// We finalize PETSc
if (use_petsc) { MFEMFinalizePetsc(); }
return 0;
}
|