1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
|
// MFEM Example 9 - Parallel Version
// PETSc Modification
//
// Compile with: make ex9p
//
// Sample runs:
// mpirun -np 4 ex9p -m ../../data/periodic-hexagon.mesh --petscopts rc_ex9p_expl
// mpirun -np 4 ex9p -m ../../data/periodic-hexagon.mesh --petscopts rc_ex9p_impl -implicit
//
// Description: This example code solves the time-dependent advection equation
// du/dt + v.grad(u) = 0, where v is a given fluid velocity, and
// u0(x)=u(0,x) is a given initial condition.
//
// The example demonstrates the use of Discontinuous Galerkin (DG)
// bilinear forms in MFEM (face integrators), the use of explicit
// ODE time integrators, the definition of periodic boundary
// conditions through periodic meshes, as well as the use of GLVis
// for persistent visualization of a time-evolving solution. The
// saving of time-dependent data files for external visualization
// with VisIt (visit.llnl.gov) is also illustrated.
//
// The example also demonstrates how to use PETSc ODE solvers and
// customize them by command line (see rc_ex9p_expl and
// rc_ex9p_impl). The split in left-hand side and right-hand side
// of the TimeDependentOperator is amenable for IMEX methods.
// When using fully implicit methods, just the left-hand side of
// the operator should be provided for efficiency reasons when
// assembling the Jacobians. Here, we provide two Jacobian
// routines just to illustrate the capabilities of the
// PetscODESolver class. We also show how to monitor the time
// dependent solution inside a call to PetscODESolver:Mult.
#include "mfem.hpp"
#include <fstream>
#include <iostream>
#ifndef MFEM_USE_PETSC
#error This example requires that MFEM is built with MFEM_USE_PETSC=YES
#endif
using namespace std;
using namespace mfem;
// Choice for the problem setup. The fluid velocity, initial condition and
// inflow boundary condition are chosen based on this parameter.
int problem;
// Velocity coefficient
void velocity_function(const Vector &x, Vector &v);
// Initial condition
real_t u0_function(const Vector &x);
// Inflow boundary condition
real_t inflow_function(const Vector &x);
// Mesh bounding box
Vector bb_min, bb_max;
/** A time-dependent operator for the ODE as F(u,du/dt,t) = G(u,t)
The DG weak form of du/dt = -v.grad(u) is M du/dt = K u + b, where M and K are the mass
and advection matrices, and b describes the flow on the boundary. This can
be also written as a general ODE with the right-hand side only as
du/dt = M^{-1} (K u + b).
This class is used to evaluate the right-hand side and the left-hand side. */
class FE_Evolution : public TimeDependentOperator
{
private:
OperatorHandle M, K;
const Vector &b;
MPI_Comm comm;
Solver *M_prec;
CGSolver M_solver;
AssemblyLevel MAlev,KAlev;
mutable Vector z;
mutable PetscParMatrix* iJacobian;
mutable PetscParMatrix* rJacobian;
public:
FE_Evolution(ParBilinearForm &M_, ParBilinearForm &K_, const Vector &b_,
bool implicit);
virtual void ExplicitMult(const Vector &x, Vector &y) const;
virtual void ImplicitMult(const Vector &x, const Vector &xp, Vector &y) const;
virtual void Mult(const Vector &x, Vector &y) const;
virtual Operator& GetExplicitGradient(const Vector &x) const;
virtual Operator& GetImplicitGradient(const Vector &x, const Vector &xp,
real_t shift) const;
virtual ~FE_Evolution() { delete iJacobian; delete rJacobian; }
};
// Monitor the solution at time step "step", explicitly in the time loop
class UserMonitor : public PetscSolverMonitor
{
private:
socketstream& sout;
ParMesh* pmesh;
ParGridFunction* u;
int vt;
bool pause;
public:
UserMonitor(socketstream& s_, ParMesh* m_, ParGridFunction* u_, int vt_) :
PetscSolverMonitor(true,false), sout(s_), pmesh(m_), u(u_), vt(vt_),
pause(true) {}
void MonitorSolution(PetscInt step, PetscReal norm, const Vector &X)
{
if (step % vt == 0)
{
int num_procs, myid;
*u = X;
MPI_Comm_size(pmesh->GetComm(),&num_procs);
MPI_Comm_rank(pmesh->GetComm(),&myid);
sout << "parallel " << num_procs << " " << myid << "\n";
sout << "solution\n" << *pmesh << *u;
if (pause) { sout << "pause\n"; }
sout << flush;
if (pause)
{
pause = false;
if (myid == 0)
{
cout << "GLVis visualization paused."
<< " Press space (in the GLVis window) to resume it.\n";
}
}
}
}
};
int main(int argc, char *argv[])
{
// 1. Initialize MPI and HYPRE.
Mpi::Init(argc, argv);
int num_procs = Mpi::WorldSize();
int myid = Mpi::WorldRank();
Hypre::Init();
// 2. Parse command-line options.
problem = 0;
const char *mesh_file = "../../data/periodic-hexagon.mesh";
int ser_ref_levels = 2;
int par_ref_levels = 0;
int order = 3;
bool pa = false;
bool ea = false;
bool fa = false;
const char *device_config = "cpu";
int ode_solver_type = 4;
real_t t_final = 10.0;
real_t dt = 0.01;
bool visualization = true;
bool visit = false;
bool binary = false;
int vis_steps = 5;
bool use_petsc = true;
bool implicit = false;
bool use_step = true;
const char *petscrc_file = "";
int precision = 8;
cout.precision(precision);
OptionsParser args(argc, argv);
args.AddOption(&mesh_file, "-m", "--mesh",
"Mesh file to use.");
args.AddOption(&problem, "-p", "--problem",
"Problem setup to use. See options in velocity_function().");
args.AddOption(&ser_ref_levels, "-rs", "--refine-serial",
"Number of times to refine the mesh uniformly in serial.");
args.AddOption(&par_ref_levels, "-rp", "--refine-parallel",
"Number of times to refine the mesh uniformly in parallel.");
args.AddOption(&order, "-o", "--order",
"Order (degree) of the finite elements.");
args.AddOption(&pa, "-pa", "--partial-assembly", "-no-pa",
"--no-partial-assembly", "Enable Partial Assembly.");
args.AddOption(&ea, "-ea", "--element-assembly", "-no-ea",
"--no-element-assembly", "Enable Element Assembly.");
args.AddOption(&fa, "-fa", "--full-assembly", "-no-fa",
"--no-full-assembly", "Enable Full Assembly.");
args.AddOption(&device_config, "-d", "--device",
"Device configuration string, see Device::Configure().");
args.AddOption(&ode_solver_type, "-s", "--ode-solver",
"ODE solver: 1 - Forward Euler,\n\t"
" 2 - RK2 SSP, 3 - RK3 SSP, 4 - RK4, 6 - RK6.");
args.AddOption(&t_final, "-tf", "--t-final",
"Final time; start time is 0.");
args.AddOption(&dt, "-dt", "--time-step",
"Time step.");
args.AddOption(&visualization, "-vis", "--visualization", "-no-vis",
"--no-visualization",
"Enable or disable GLVis visualization.");
args.AddOption(&visit, "-visit", "--visit-datafiles", "-no-visit",
"--no-visit-datafiles",
"Save data files for VisIt (visit.llnl.gov) visualization.");
args.AddOption(&binary, "-binary", "--binary-datafiles", "-ascii",
"--ascii-datafiles",
"Use binary (Sidre) or ascii format for VisIt data files.");
args.AddOption(&vis_steps, "-vs", "--visualization-steps",
"Visualize every n-th timestep.");
args.AddOption(&use_petsc, "-usepetsc", "--usepetsc", "-no-petsc",
"--no-petsc",
"Use or not PETSc to solve the ODE system.");
args.AddOption(&petscrc_file, "-petscopts", "--petscopts",
"PetscOptions file to use.");
args.AddOption(&use_step, "-usestep", "--usestep", "-no-step",
"--no-step",
"Use the Step() or Run() method to solve the ODE system.");
args.AddOption(&implicit, "-implicit", "--implicit", "-no-implicit",
"--no-implicit",
"Use or not an implicit method in PETSc to solve the ODE system.");
args.Parse();
if (!args.Good())
{
if (myid == 0)
{
args.PrintUsage(cout);
}
return 1;
}
if (myid == 0)
{
args.PrintOptions(cout);
}
Device device(device_config);
if (myid == 0) { device.Print(); }
// 3. Read the serial mesh from the given mesh file on all processors. We can
// handle geometrically periodic meshes in this code.
Mesh *mesh = new Mesh(mesh_file, 1, 1);
int dim = mesh->Dimension();
// 4. Define the ODE solver used for time integration. Several explicit
// Runge-Kutta methods are available.
ODESolver *ode_solver = NULL;
PetscODESolver *pode_solver = NULL;
UserMonitor *pmon = NULL;
if (!use_petsc)
{
switch (ode_solver_type)
{
case 1: ode_solver = new ForwardEulerSolver; break;
case 2: ode_solver = new RK2Solver(1.0); break;
case 3: ode_solver = new RK3SSPSolver; break;
case 4: ode_solver = new RK4Solver; break;
case 6: ode_solver = new RK6Solver; break;
default:
if (myid == 0)
{
cout << "Unknown ODE solver type: " << ode_solver_type << '\n';
}
return 3;
}
}
else
{
// When using PETSc, we just create the ODE solver. We use command line
// customization to select a specific solver.
MFEMInitializePetsc(NULL, NULL, petscrc_file, NULL);
ode_solver = pode_solver = new PetscODESolver(MPI_COMM_WORLD);
}
// 5. Refine the mesh in serial to increase the resolution. In this example
// we do 'ser_ref_levels' of uniform refinement, where 'ser_ref_levels' is
// a command-line parameter. If the mesh is of NURBS type, we convert it
// to a (piecewise-polynomial) high-order mesh.
for (int lev = 0; lev < ser_ref_levels; lev++)
{
mesh->UniformRefinement();
}
if (mesh->NURBSext)
{
mesh->SetCurvature(max(order, 1));
}
mesh->GetBoundingBox(bb_min, bb_max, max(order, 1));
// 6. Define the parallel mesh by a partitioning of the serial mesh. Refine
// this mesh further in parallel to increase the resolution. Once the
// parallel mesh is defined, the serial mesh can be deleted.
ParMesh *pmesh = new ParMesh(MPI_COMM_WORLD, *mesh);
delete mesh;
for (int lev = 0; lev < par_ref_levels; lev++)
{
pmesh->UniformRefinement();
}
// 7. Define the parallel discontinuous DG finite element space on the
// parallel refined mesh of the given polynomial order.
DG_FECollection fec(order, dim, BasisType::GaussLobatto);
ParFiniteElementSpace *fes = new ParFiniteElementSpace(pmesh, &fec);
HYPRE_BigInt global_vSize = fes->GlobalTrueVSize();
if (myid == 0)
{
cout << "Number of unknowns: " << global_vSize << endl;
}
// 8. Set up and assemble the parallel bilinear and linear forms (and the
// parallel hypre matrices) corresponding to the DG discretization. The
// DGTraceIntegrator involves integrals over mesh interior faces.
VectorFunctionCoefficient velocity(dim, velocity_function);
FunctionCoefficient inflow(inflow_function);
FunctionCoefficient u0(u0_function);
ParBilinearForm *m = new ParBilinearForm(fes);
ParBilinearForm *k = new ParBilinearForm(fes);
if (pa)
{
m->SetAssemblyLevel(AssemblyLevel::PARTIAL);
k->SetAssemblyLevel(AssemblyLevel::PARTIAL);
}
else if (ea)
{
m->SetAssemblyLevel(AssemblyLevel::ELEMENT);
k->SetAssemblyLevel(AssemblyLevel::ELEMENT);
}
else if (fa)
{
m->SetAssemblyLevel(AssemblyLevel::FULL);
k->SetAssemblyLevel(AssemblyLevel::FULL);
}
m->AddDomainIntegrator(new MassIntegrator);
k->AddDomainIntegrator(new ConvectionIntegrator(velocity, -1.0));
k->AddInteriorFaceIntegrator(
new TransposeIntegrator(new DGTraceIntegrator(velocity, 1.0, -0.5)));
k->AddBdrFaceIntegrator(
new TransposeIntegrator(new DGTraceIntegrator(velocity, 1.0, -0.5)));
ParLinearForm *b = new ParLinearForm(fes);
b->AddBdrFaceIntegrator(
new BoundaryFlowIntegrator(inflow, velocity, -1.0, -0.5));
int skip_zeros = 0;
m->Assemble();
k->Assemble(skip_zeros);
b->Assemble();
m->Finalize();
k->Finalize(skip_zeros);
HypreParVector *B = b->ParallelAssemble();
// 9. Define the initial conditions, save the corresponding grid function to
// a file and (optionally) save data in the VisIt format and initialize
// GLVis visualization.
ParGridFunction *u = new ParGridFunction(fes);
u->ProjectCoefficient(u0);
HypreParVector *U = u->GetTrueDofs();
{
ostringstream mesh_name, sol_name;
mesh_name << "ex9-mesh." << setfill('0') << setw(6) << myid;
sol_name << "ex9-init." << setfill('0') << setw(6) << myid;
ofstream omesh(mesh_name.str().c_str());
omesh.precision(precision);
pmesh->Print(omesh);
ofstream osol(sol_name.str().c_str());
osol.precision(precision);
u->Save(osol);
}
// Create data collection for solution output: either VisItDataCollection for
// ascii data files, or SidreDataCollection for binary data files.
DataCollection *dc = NULL;
if (visit)
{
if (binary)
{
#ifdef MFEM_USE_SIDRE
dc = new SidreDataCollection("Example9-Parallel", pmesh);
#else
MFEM_ABORT("Must build with MFEM_USE_SIDRE=YES for binary output.");
#endif
}
else
{
dc = new VisItDataCollection("Example9-Parallel", pmesh);
dc->SetPrecision(precision);
}
dc->RegisterField("solution", u);
dc->SetCycle(0);
dc->SetTime(0.0);
dc->Save();
}
socketstream sout;
if (visualization)
{
char vishost[] = "localhost";
int visport = 19916;
sout.open(vishost, visport);
if (!sout)
{
if (myid == 0)
cout << "Unable to connect to GLVis server at "
<< vishost << ':' << visport << endl;
visualization = false;
if (myid == 0)
{
cout << "GLVis visualization disabled.\n";
}
}
else if (use_step)
{
sout << "parallel " << num_procs << " " << myid << "\n";
sout.precision(precision);
sout << "solution\n" << *pmesh << *u;
sout << "pause\n";
sout << flush;
if (myid == 0)
cout << "GLVis visualization paused."
<< " Press space (in the GLVis window) to resume it.\n";
}
else if (use_petsc)
{
// Set the monitoring routine for the PetscODESolver.
sout.precision(precision);
pmon = new UserMonitor(sout,pmesh,u,vis_steps);
pode_solver->SetMonitor(pmon);
}
}
// 10. Define the time-dependent evolution operator describing the ODE
FE_Evolution *adv = new FE_Evolution(*m, *k, *B, implicit);
real_t t = 0.0;
adv->SetTime(t);
if (use_petsc)
{
pode_solver->Init(*adv,PetscODESolver::ODE_SOLVER_LINEAR);
}
else
{
ode_solver->Init(*adv);
}
// Explicitly perform time-integration (looping over the time iterations, ti,
// with a time-step dt), or use the Run method of the ODE solver class.
if (use_step)
{
bool done = false;
for (int ti = 0; !done; )
{
// We cannot match exactly the time history of the Run method
// since we are explicitly telling PETSc to use a time step
real_t dt_real = min(dt, t_final - t);
ode_solver->Step(*U, t, dt_real);
ti++;
done = (t >= t_final - 1e-8*dt);
if (done || ti % vis_steps == 0)
{
if (myid == 0)
{
cout << "time step: " << ti << ", time: " << t << endl;
}
// 11. Extract the parallel grid function corresponding to the finite
// element approximation U (the local solution on each processor).
*u = *U;
if (visualization)
{
sout << "parallel " << num_procs << " " << myid << "\n";
sout << "solution\n" << *pmesh << *u << flush;
}
if (visit)
{
dc->SetCycle(ti);
dc->SetTime(t);
dc->Save();
}
}
}
}
else { ode_solver->Run(*U, t, dt, t_final); }
// 12. Save the final solution in parallel. This output can be viewed later
// using GLVis: "glvis -np <np> -m ex9-mesh -g ex9-final".
{
*u = *U;
ostringstream sol_name;
sol_name << "ex9-final." << setfill('0') << setw(6) << myid;
ofstream osol(sol_name.str().c_str());
osol.precision(precision);
u->Save(osol);
}
// 13. Free the used memory.
delete U;
delete u;
delete B;
delete b;
delete k;
delete m;
delete fes;
delete pmesh;
delete ode_solver;
delete dc;
delete adv;
delete pmon;
// We finalize PETSc
if (use_petsc) { MFEMFinalizePetsc(); }
return 0;
}
// Implementation of class FE_Evolution
FE_Evolution::FE_Evolution(ParBilinearForm &M_, ParBilinearForm &K_,
const Vector &b_,bool M_in_lhs)
: TimeDependentOperator(M_.ParFESpace()->GetTrueVSize(), 0.0,
M_in_lhs ? TimeDependentOperator::IMPLICIT
: TimeDependentOperator::EXPLICIT),
b(b_), comm(M_.ParFESpace()->GetComm()), M_solver(comm), z(height),
iJacobian(NULL), rJacobian(NULL)
{
MAlev = M_.GetAssemblyLevel();
KAlev = K_.GetAssemblyLevel();
if (M_.GetAssemblyLevel()==AssemblyLevel::LEGACY)
{
M.Reset(M_.ParallelAssemble(), true);
K.Reset(K_.ParallelAssemble(), true);
}
else
{
M.Reset(&M_, false);
K.Reset(&K_, false);
}
M_solver.SetOperator(*M);
Array<int> ess_tdof_list;
if (M_.GetAssemblyLevel()==AssemblyLevel::LEGACY)
{
HypreParMatrix &M_mat = *M.As<HypreParMatrix>();
HypreSmoother *hypre_prec = new HypreSmoother(M_mat, HypreSmoother::Jacobi);
M_prec = hypre_prec;
}
else
{
M_prec = new OperatorJacobiSmoother(M_, ess_tdof_list);
}
M_solver.SetPreconditioner(*M_prec);
M_solver.iterative_mode = false;
M_solver.SetRelTol(1e-9);
M_solver.SetAbsTol(0.0);
M_solver.SetMaxIter(100);
M_solver.SetPrintLevel(0);
}
// RHS evaluation
void FE_Evolution::ExplicitMult(const Vector &x, Vector &y) const
{
if (isExplicit())
{
// y = M^{-1} (K x + b)
K->Mult(x, z);
z += b;
M_solver.Mult(z, y);
}
else
{
// y = K x + b
K->Mult(x, y);
y += b;
}
}
// LHS evaluation
void FE_Evolution::ImplicitMult(const Vector &x, const Vector &xp,
Vector &y) const
{
if (isImplicit())
{
M->Mult(xp, y);
}
else
{
y = xp;
}
}
void FE_Evolution::Mult(const Vector &x, Vector &y) const
{
// y = M^{-1} (K x + b)
K->Mult(x, z);
z += b;
M_solver.Mult(z, y);
}
// RHS Jacobian
Operator& FE_Evolution::GetExplicitGradient(const Vector &x) const
{
delete rJacobian;
Operator::Type otype = (KAlev == AssemblyLevel::LEGACY ?
Operator::PETSC_MATAIJ : Operator::ANY_TYPE);
if (isImplicit())
{
rJacobian = new PetscParMatrix(comm, K.Ptr(), otype);
}
else
{
mfem_error("FE_Evolution::GetExplicitGradient(x): Capability not coded!");
}
return *rJacobian;
}
// LHS Jacobian, evaluated as shift*F_du/dt + F_u
Operator& FE_Evolution::GetImplicitGradient(const Vector &x, const Vector &xp,
real_t shift) const
{
Operator::Type otype = (MAlev == AssemblyLevel::LEGACY ?
Operator::PETSC_MATAIJ : Operator::ANY_TYPE);
delete iJacobian;
if (isImplicit())
{
iJacobian = new PetscParMatrix(comm, M.Ptr(), otype);
*iJacobian *= shift;
}
else
{
mfem_error("FE_Evolution::GetImplicitGradient(x,xp,shift):"
" Capability not coded!");
}
return *iJacobian;
}
// Velocity coefficient
void velocity_function(const Vector &x, Vector &v)
{
int dim = x.Size();
// map to the reference [-1,1] domain
Vector X(dim);
for (int i = 0; i < dim; i++)
{
real_t center = (bb_min[i] + bb_max[i]) * 0.5;
X(i) = 2 * (x(i) - center) / (bb_max[i] - bb_min[i]);
}
switch (problem)
{
case 0:
{
// Translations in 1D, 2D, and 3D
switch (dim)
{
case 1: v(0) = 1.0; break;
case 2: v(0) = sqrt(2./3.); v(1) = sqrt(1./3.); break;
case 3: v(0) = sqrt(3./6.); v(1) = sqrt(2./6.); v(2) = sqrt(1./6.);
break;
}
break;
}
case 1:
case 2:
{
// Clockwise rotation in 2D around the origin
const real_t w = M_PI/2;
switch (dim)
{
case 1: v(0) = 1.0; break;
case 2: v(0) = w*X(1); v(1) = -w*X(0); break;
case 3: v(0) = w*X(1); v(1) = -w*X(0); v(2) = 0.0; break;
}
break;
}
case 3:
{
// Clockwise twisting rotation in 2D around the origin
const real_t w = M_PI/2;
real_t d = max((X(0)+1.)*(1.-X(0)),0.) * max((X(1)+1.)*(1.-X(1)),0.);
d = d*d;
switch (dim)
{
case 1: v(0) = 1.0; break;
case 2: v(0) = d*w*X(1); v(1) = -d*w*X(0); break;
case 3: v(0) = d*w*X(1); v(1) = -d*w*X(0); v(2) = 0.0; break;
}
break;
}
}
}
// Initial condition
real_t u0_function(const Vector &x)
{
int dim = x.Size();
// map to the reference [-1,1] domain
Vector X(dim);
for (int i = 0; i < dim; i++)
{
real_t center = (bb_min[i] + bb_max[i]) * 0.5;
X(i) = 2 * (x(i) - center) / (bb_max[i] - bb_min[i]);
}
switch (problem)
{
case 0:
case 1:
{
switch (dim)
{
case 1:
return exp(-40.*pow(X(0)-0.5,2));
case 2:
case 3:
{
real_t rx = 0.45, ry = 0.25, cx = 0., cy = -0.2, w = 10.;
if (dim == 3)
{
const real_t s = (1. + 0.25*cos(2*M_PI*X(2)));
rx *= s;
ry *= s;
}
return ( erfc(w*(X(0)-cx-rx))*erfc(-w*(X(0)-cx+rx)) *
erfc(w*(X(1)-cy-ry))*erfc(-w*(X(1)-cy+ry)) )/16;
}
}
}
case 2:
{
real_t x_ = X(0), y_ = X(1), rho, phi;
rho = hypot(x_, y_);
phi = atan2(y_, x_);
return pow(sin(M_PI*rho),2)*sin(3*phi);
}
case 3:
{
const real_t f = M_PI;
return sin(f*X(0))*sin(f*X(1));
}
}
return 0.0;
}
// Inflow boundary condition (zero for the problems considered in this example)
real_t inflow_function(const Vector &x)
{
switch (problem)
{
case 0:
case 1:
case 2:
case 3: return 0.0;
}
return 0.0;
}
|