File: ex40.cpp

package info (click to toggle)
mfem 4.9%2Bds-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 23,396 kB
  • sloc: cpp: 401,979; makefile: 3,942; sh: 845; xml: 590; javascript: 99
file content (364 lines) | stat: -rw-r--r-- 11,796 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
//                                MFEM Example 40
//
// Compile with: make ex40
//
// Sample runs: ex40 -step 10.0 -gr 2.0
//              ex40 -step 10.0 -gr 2.0 -o 3 -r 1
//              ex40 -step 10.0 -gr 2.0 -r 4 -m ../data/l-shape.mesh
//              ex40 -step 10.0 -gr 2.0 -r 2 -m ../data/fichera.mesh
//
// Description: This example code demonstrates how to use MFEM to solve the
//              eikonal equation,
//
//                      |โˆ‡๐‘ข| = 1 in ฮฉ,  ๐‘ข = 0 on โˆ‚ฮฉ.
//
//              The viscosity solution of this problem coincides with the unique optimum
//              of the nonlinear program
//
//                   maximize โˆซ_ฮฉ ๐‘ข d๐‘ฅ subject to |โˆ‡๐‘ข| โ‰ค 1 in ฮฉ, ๐‘ข = 0 on โˆ‚ฮฉ,    (โ‹†)
//
//              which is the foundation for method implemented below.
//
//              Following the proximal Galerkin methodology [1,2] (see also Example
//              36), we construct a Legendre function for the closed unit ball
//              ๐ตโ‚ := {๐‘ฅ โˆˆ Rโฟ | |๐‘ฅ| โ‰ค 1}. Our choice is the Hellinger entropy,
//
//                    R(๐‘ฅ) = โˆ’( 1 โˆ’ |๐‘ฅ|ยฒ )^{1/2},
//
//              although other choices are possible, each leading to a slightly
//              different algorithm. We then adaptively regularize the optimization
//              problem (โ‹†) with the Bregman divergence of the Hellinger entropy,
//
//                 maximize  โˆซ_ฮฉ ๐‘ข d๐‘ฅ - ฮฑโ‚–โปยน D(โˆ‡๐‘ข,โˆ‡๐‘ขโ‚–โ‚‹โ‚)  subject to  ๐‘ข = 0 on ฮฉ.
//
//              This results in a sequence of functions ( ๐œ“โ‚– , ๐‘ขโ‚– ),
//
//                      ๐‘ขโ‚– โ†’ ๐‘ข,    ๐œ“โ‚–/|๐œ“โ‚–| โ†’ โˆ‡๐‘ข    as k โ†’ โˆž,
//
//              defined by the nonlinear saddle-point problems
//
//               Find ๐œ“โ‚– โˆˆ H(div,ฮฉ) and ๐‘ขโ‚– โˆˆ Lยฒ(ฮฉ) such that
//               ( (โˆ‡R)โปยน(๐œ“โ‚–) , ฯ„ ) + ( ๐‘ขโ‚– , โˆ‡โ‹…ฯ„ ) = 0                     โˆ€ ฯ„ โˆˆ H(div,ฮฉ)
//               ( โˆ‡โ‹…๐œ“โ‚– , v )                     = ( โˆ‡โ‹…๐œ“โ‚–โ‚‹โ‚ - ฮฑโ‚– , v )    โˆ€ v โˆˆ Lยฒ(ฮฉ)
//
//              where (โˆ‡R)โปยน(๐œ“) = ๐œ“ / ( 1 + |๐œ“|ยฒ )^{1/2} and ฮฑโ‚– = ฮฑโ‚€rแต, where r โ‰ฅ 1
//              is a prescribed growth rate. (r = 1 is the most stable.) The
//              saddle-point problems are solved using a damped quasi-Newton method
//              with a tunable regularization parameter 0 โ‰ค ฯต << 1.
//
//              [1] Keith, B. and Surowiec, T. (2024) Proximal Galerkin: A structure-
//                  preserving finite element method for pointwise bound constraints.
//                  Foundations of Computational Mathematics, 1โ€“97.
//              [2] Dokken, J., Farrell, P., Keith, B., Papadopoulos, I., and
//                  Surowiec, T. (2025) The latent variable proximal point algorithm
//                  for variational problems with inequality constraints. (To appear.)

#include "mfem.hpp"
#include <fstream>
#include <iostream>

using namespace std;
using namespace mfem;

class IsomorphismCoefficient : public VectorCoefficient
{
protected:
   GridFunction *psi;

public:
   IsomorphismCoefficient(int vdim, GridFunction &psi_)
      : VectorCoefficient(vdim), psi(&psi_) { }

   using VectorCoefficient::Eval;

   void Eval(Vector &V, ElementTransformation &T,
             const IntegrationPoint &ip) override;
};

class DIsomorphismCoefficient : public MatrixCoefficient
{
protected:
   GridFunction *psi;
   real_t eps;

public:
   DIsomorphismCoefficient(int height, GridFunction &psi_, real_t eps_ = 0.0)
      : MatrixCoefficient(height),  psi(&psi_), eps(eps_) { }

   void Eval(DenseMatrix &K, ElementTransformation &T,
             const IntegrationPoint &ip) override;
};

int main(int argc, char *argv[])
{
   // 1. Parse command-line options.
   const char *mesh_file = "../data/star.mesh";
   int order = 1;
   int max_it = 5;
   int ref_levels = 3;
   real_t alpha = 1.0;
   real_t growth_rate = 1.0;
   real_t newton_scaling = 0.8;
   real_t eps = 1e-6;
   real_t tol = 1e-4;
   bool visualization = true;

   OptionsParser args(argc, argv);
   args.AddOption(&mesh_file, "-m", "--mesh",
                  "Mesh file to use.");
   args.AddOption(&order, "-o", "--order",
                  "Finite element order (polynomial degree).");
   args.AddOption(&ref_levels, "-r", "--refs",
                  "Number of h-refinements.");
   args.AddOption(&max_it, "-mi", "--max-it",
                  "Maximum number of iterations");
   args.AddOption(&tol, "-tol", "--tol",
                  "Stopping criteria based on the difference between"
                  "successive solution updates");
   args.AddOption(&alpha, "-step", "--step",
                  "Initial size alpha");
   args.AddOption(&growth_rate, "-gr", "--growth-rate",
                  "Growth rate of the step size alpha");
   args.AddOption(&visualization, "-vis", "--visualization", "-no-vis",
                  "--no-visualization",
                  "Enable or disable GLVis visualization.");
   args.Parse();
   if (!args.Good())
   {
      args.PrintUsage(cout);
      return 1;
   }
   args.PrintOptions(cout);

   // 2. Read the mesh from the mesh file.
   Mesh mesh(mesh_file, 1, 1);
   int dim = mesh.Dimension();
   int sdim = mesh.SpaceDimension();

   MFEM_ASSERT(mesh.bdr_attributes.Size(),
               "This example does not support meshes"
               " without boundary attributes."
              )

   // 3. Postprocess the mesh.
   // 3A. Refine the mesh to increase the resolution.
   for (int l = 0; l < ref_levels; l++)
   {
      mesh.UniformRefinement();
   }

   // 3B. Interpolate the geometry after refinement to control geometry error.
   // NOTE: Minimum second-order interpolation is used to improve the accuracy.
   int curvature_order = max(order,2);
   mesh.SetCurvature(curvature_order);

   // 4. Define the necessary finite element spaces on the mesh.
   RT_FECollection RTfec(order, dim);
   FiniteElementSpace RTfes(&mesh, &RTfec);

   L2_FECollection L2fec(order, dim);
   FiniteElementSpace L2fes(&mesh, &L2fec);

   cout << "Number of H(div) dofs: "
        << RTfes.GetTrueVSize() << endl;
   cout << "Number of Lยฒ dofs: "
        << L2fes.GetTrueVSize() << endl;

   // 5. Define the offsets for the block matrices
   Array<int> offsets(3);
   offsets[0] = 0;
   offsets[1] = RTfes.GetVSize();
   offsets[2] = L2fes.GetVSize();
   offsets.PartialSum();

   BlockVector x(offsets), rhs(offsets);
   x = 0.0; rhs = 0.0;

   // 6. Define the solution vectors as a finite element grid functions
   //    corresponding to the fespaces.
   GridFunction u_gf, delta_psi_gf;
   delta_psi_gf.MakeRef(&RTfes,x,offsets[0]);
   u_gf.MakeRef(&L2fes,x,offsets[1]);

   GridFunction psi_old_gf(&RTfes);
   GridFunction psi_gf(&RTfes);
   GridFunction u_old_gf(&L2fes);

   // 7. Define initial guesses for the solution variables.
   delta_psi_gf = 0.0;
   psi_gf = 0.0;
   u_gf = 0.0;
   psi_old_gf = psi_gf;
   u_old_gf = u_gf;

   // 8. Prepare for glvis output.
   char vishost[] = "localhost";
   int  visport   = 19916;
   socketstream sol_sock;
   if (visualization)
   {
      sol_sock.open(vishost,visport);
      sol_sock.precision(8);
   }

   // 9. Coefficients to be used later.
   ConstantCoefficient neg_alpha_cf((real_t) -1.0*alpha);
   ConstantCoefficient zero_cf(0.0);
   IsomorphismCoefficient Z(sdim, psi_gf);
   DIsomorphismCoefficient DZ(sdim, psi_gf, eps);
   ScalarVectorProductCoefficient neg_Z(-1.0, Z);
   DivergenceGridFunctionCoefficient div_psi_cf(&psi_gf);
   DivergenceGridFunctionCoefficient div_psi_old_cf(&psi_old_gf);
   SumCoefficient psi_old_minus_psi(div_psi_old_cf, div_psi_cf, 1.0, -1.0);

   // 10. Assemble constant matrices/vectors to avoid reassembly in the loop.
   LinearForm b0, b1;
   b0.MakeRef(&RTfes,rhs.GetBlock(0),0);
   b1.MakeRef(&L2fes,rhs.GetBlock(1),0);

   b0.AddDomainIntegrator(new VectorFEDomainLFIntegrator(neg_Z));
   b1.AddDomainIntegrator(new DomainLFIntegrator(neg_alpha_cf));
   b1.AddDomainIntegrator(new DomainLFIntegrator(psi_old_minus_psi));

   BilinearForm a00(&RTfes);
   a00.AddDomainIntegrator(new VectorFEMassIntegrator(DZ));

   MixedBilinearForm a10(&RTfes,&L2fes);
   a10.AddDomainIntegrator(new VectorFEDivergenceIntegrator());
   a10.Assemble();
   a10.Finalize();
   SparseMatrix &A10 = a10.SpMat();
   SparseMatrix *A01 = Transpose(A10);

   // 11. Iterate.
   int k;
   int total_iterations = 0;
   real_t increment_u = 0.1;
   GridFunction u_tmp(&L2fes);
   for (k = 0; k < max_it; k++)
   {
      u_tmp = u_old_gf;

      mfem::out << "\nOUTER ITERATION " << k+1 << endl;

      int j;
      for ( j = 0; j < 5; j++)
      {
         total_iterations++;

         b0.Assemble();
         b1.Assemble();

         a00.Assemble(false);
         a00.Finalize(false);
         SparseMatrix &A00 = a00.SpMat();

         // Construct Schur-complement preconditioner
         Vector A00_diag(a00.Height());
         A00.GetDiag(A00_diag);
         A00_diag.Reciprocal();
         SparseMatrix *S = Mult_AtDA(*A01, A00_diag);

         BlockDiagonalPreconditioner prec(offsets);
         prec.SetDiagonalBlock(0,new DSmoother(A00));
#ifndef MFEM_USE_SUITESPARSE
         prec.SetDiagonalBlock(1,new GSSmoother(*S));
#else
         prec.SetDiagonalBlock(1,new UMFPackSolver(*S));
#endif
         prec.owns_blocks = 1;

         BlockOperator A(offsets);
         A.SetBlock(0,0,&A00);
         A.SetBlock(1,0,&A10);
         A.SetBlock(0,1,A01);

         MINRES(A,prec,rhs,x,0,2000,1e-12);
         delete S;

         u_tmp -= u_gf;
         real_t Newton_update_size = u_tmp.ComputeL2Error(zero_cf);
         u_tmp = u_gf;

         // Damped Newton update
         psi_gf.Add(newton_scaling, delta_psi_gf);
         a00.Update();

         if (visualization)
         {
            sol_sock << "solution\n" << mesh << u_gf << "window_title 'Discrete solution'"
                     << flush;
         }

         mfem::out << "Newton_update_size = " << Newton_update_size << endl;

         if (Newton_update_size < increment_u)
         {
            break;
         }
      }

      u_tmp = u_gf;
      u_tmp -= u_old_gf;
      increment_u = u_tmp.ComputeL2Error(zero_cf);

      mfem::out << "Number of Newton iterations = " << j+1 << endl;
      mfem::out << "Increment (|| uโ‚• - uโ‚•_prvs||) = " << increment_u << endl;

      u_old_gf = u_gf;
      psi_old_gf = psi_gf;

      if (increment_u < tol || k == max_it-1)
      {
         break;
      }

      alpha *= max(growth_rate, 1_r);
      neg_alpha_cf.constant = -alpha;

   }

   mfem::out << "\n Outer iterations: " << k+1
             << "\n Total iterations: " << total_iterations
             << "\n Total dofs:       " << RTfes.GetTrueVSize() + L2fes.GetTrueVSize()
             << endl;

   delete A01;
   return 0;
}

void IsomorphismCoefficient::Eval(Vector &V, ElementTransformation &T,
                                  const IntegrationPoint &ip)
{
   MFEM_ASSERT(psi != NULL, "grid function is not set");

   Vector psi_vals(vdim);
   psi->GetVectorValue(T, ip, psi_vals);
   real_t norm = psi_vals.Norml2();
   real_t phi = 1.0 / sqrt(1.0 + norm*norm);

   V = psi_vals;
   V *= phi;
}

void DIsomorphismCoefficient::Eval(DenseMatrix &K, ElementTransformation &T,
                                   const IntegrationPoint &ip)
{
   MFEM_ASSERT(psi != NULL, "grid function is not set");
   MFEM_ASSERT(eps >= 0, "eps is negative");

   Vector psi_vals(height);
   psi->GetVectorValue(T, ip, psi_vals);
   real_t norm = psi_vals.Norml2();
   real_t phi = 1.0 / sqrt(1.0 + norm*norm);

   K = 0.0;
   for (int i = 0; i < height; i++)
   {
      K(i,i) = phi + eps;
      for (int j = 0; j < height; j++)
      {
         K(i,j) -= psi_vals(i) * psi_vals(j) * pow(phi, 3);
      }
   }
}