1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
|
/* Copyright 2001,2002 Matt Flax <flatmax@ieee.org>
This file is part of the MFFM FFTw Wrapper library.
MFFM MFFM FFTw Wrapper library is free software; you can
redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
MFFM FFTw Wrapper library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You have received a copy of the GNU General Public License
along with the MFFM FFTw Wrapper library
*/
#include "complexFFT.H"
#include <stdlib.h>
#include <iostream>
using namespace std;
complexFFTData::
complexFFTData(int sz){
// std::cout <<"complexFFTData init:"<<this<<std::endl;
size=sz;
in = out = NULL;
power_spectrum = NULL;
//in = new fftw_complex[size];
//out = new fftw_complex[size];
//power_spectrum = new fftw_real[size];
in = (fftw_complex*)fftw_malloc(size*sizeof(fftw_complex));
out = (fftw_complex*)fftw_malloc(size*sizeof(fftw_complex));
power_spectrum = (fftw_real*)fftw_malloc(size*sizeof(fftw_real));
if (!in || !out || !power_spectrum){
std::cerr << "Could not allocate enough mem for a complexFFT"<<std::endl;
//if (in) delete [] in;
//if (out) delete [] out;
//if (power_spectrum) delete [] power_spectrum;
if (in) fftw_free(in); in=NULL;
if (out) fftw_free(out); out=NULL;
if (power_spectrum) fftw_free(power_spectrum); power_spectrum=NULL;
exit(-1);
}
totalPower = 0.0;
// std::cout <<"complexFFTData exit"<<std::endl;
}
complexFFTData::
~complexFFTData(){
//if (in) delete [] in;
//if (out) delete [] out;
//if (power_spectrum) delete [] power_spectrum;
if (in) fftw_free(in); in=NULL;
if (out) fftw_free(out); out=NULL;
if (power_spectrum) fftw_free(power_spectrum); power_spectrum=NULL;
}
int complexFFTData::
compPowerSpec(){
int bin;
totalPower = 0.0;
double max = power_spectrum[bin=0] = c_re(out[0])*c_re(out[0])+c_im(out[0])*c_im(out[0]); // DC component
for (int k = 1; k < getSize(); ++k){
if ((power_spectrum[k] = c_re(out[k])*c_re(out[k]) + c_im(out[k])*c_im(out[k]))>max){
max=power_spectrum[bin=k];
}
totalPower += power_spectrum[k];
}
/* if (getSize() % 2 == 0){ // N is even
power_spectrum[getSize()/2] = out[getSize()/2]*out[getSize()/2]; // Nyquist freq.
if (power_spectrum[getSize()/2]>max)
max=power_spectrum[bin=getSize()/2];
totalPower += power_spectrum[getSize()/2];
}*/
return bin;
}
complexFFT::
complexFFT(complexFFTData *d) {
// std::cout <<"complexFFT init:"<<this<<std::endl;
data=d;
createPlan();
}
complexFFT::
~complexFFT(){
destroyPlan();
}
void complexFFT::
destroyPlan(void){
if (data){
fftw_destroy_plan(fwdPlan);
fftw_destroy_plan(invPlan);
}
}
void complexFFT::
createPlan(void){
if (data){
//fftw3
fwdPlan = fftw_plan_dft_1d(data->getSize(), data->in, data->out, FFTW_FORWARD, PLANTYPE);
invPlan = fftw_plan_dft_1d(data->getSize(), data->out, data->in, FFTW_BACKWARD, PLANTYPE);
}
}
void complexFFT::
switchData(complexFFTData *d){
//fftw_cleanup();
destroyPlan();
data=d;
createPlan();
}
void complexFFT::
fwdTransform(){
if (!data)
std::cerr<<"complexFFT::fwdTransform : data not present, please switch data"<<std::endl;
else
fftw_execute(fwdPlan);
/*fftw_execute_dft(
fwdPlan,
data->in, data->out);
}*/
}
void complexFFT::
invTransform(){
if (!data)
std::cerr<<"complexFFT::invTransform : data not present, please switch data"<<std::endl;
else
fftw_execute(invPlan);
/*fftw_execute_dft(
invPlan,
data->in, data->out);
}*/
}
|