1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
|
/* Copyright 2001,2002 Matt Flax <flatmax@ieee.org>
This file is part of the MFFM FFTw Wrapper library.
MFFM MFFM FFTw Wrapper library is free software; you can
redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
MFFM FFTw Wrapper library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You have received a copy of the GNU General Public License
along with the MFFM FFTw Wrapper library
*/
#include "realFFTData.H"
#include <values.h>
#include <iostream>
#include <math.h>
#include <stdlib.h>
realFFTData::
realFFTData(int sz){
deleteInOutMemory=1;
//cout <<"realFFTData init:"<<this<<endl;
size=sz;
in = out = power_spectrum = NULL;
// powerDeriv = NULL;
in = new fftw_real[size];
out = new fftw_real[size];
power_spectrum = new fftw_real[size/2+1];
if (!in || !out || !power_spectrum){
std::cerr << "Could not allocate enough mem for a realFFT"<<std::endl;
if (in) delete [] in;
if (out) delete [] out;
if (power_spectrum) delete [] power_spectrum;
exit(-1);
}
totalPower = 0.0;
}
realFFTData::
realFFTData(int sz, fftw_real *inp, fftw_real *outp){
deleteInOutMemory=0;
// cout <<"realFFTData init:"<<this<<endl;
size=sz;
if (!inp || !outp){
std::cerr<<"realFFTData::realFFTData : input or output array doesn't exist"<<std::endl;
exit(-1);
}
in = inp;
out = outp;
power_spectrum = NULL;
//powerDeriv = NULL;
power_spectrum = new fftw_real[size/2+1];
if (!power_spectrum){
std::cerr << "Could not allocate enough mem for a realFFT"<<std::endl;
if (power_spectrum) delete [] power_spectrum;
exit(-1);
}
totalPower = 0.0;
}
realFFTData::
~realFFTData(){
if (power_spectrum) delete [] power_spectrum; power_spectrum=NULL;
//if (powerDeriv) delete [] powerDeriv; powerDeriv=NULL;
// std::cout<<"realFFTData::~realFFTData"<<std::endl;
if (deleteInOutMemory){
if (in) delete [] in; in=NULL;
if (out) delete [] out; out=NULL;
}
//std::cout<<"realFFTData::~realFFTData exit"<<std::endl;
}
fftw_real realFFTData::
findMaxIn(){
fftw_real max=-MAXDOUBLE;
for (int i=0; i<getSize(); i++)
if (in[i]>max)
max=in[i];
// cout<<"max "<<max<<endl;
return max;
}
void realFFTData::
findMaxMinPowerBins(void){
double min=MAXDOUBLE;
double max=-min;
for (int i=0; i<getHalfSize(); i++){
if (power_spectrum[i]>max)
max=power_spectrum[maxPowerBin=i];
if (power_spectrum[i]<min)
min=power_spectrum[minPowerBin=i];
}
// cout<<"min bin "<<minPowerBin<<'\t'<<min<<" max poewr bin "<<maxPowerBin<<'\t'<<max<<endl;
}
int realFFTData::
limitHalfPowerSpec(double lim){
double max=0.0;
int bin=0;
for (int i=0; i<getHalfSize(); i++)
if (power_spectrum[i]> max)
max=power_spectrum[bin=i];
for (int i=0; i<getHalfSize(); i++)
power_spectrum[i] /=(max/lim);
return bin;
}
int realFFTData::
compPowerSpec(){
// int bin;
totalPower = 0.0;
double min=MAXDOUBLE;
double max=-min;
power_spectrum[maxPowerBin=0] = out[0]*out[0]; /* DC component */
for (int k = 1; k < (getSize()+1)/2; ++k){ /* (k < N/2 rounded up) */
if ((power_spectrum[k] = out[k]*out[k] + out[getSize()-k]*out[getSize()-k])>max){
max=power_spectrum[maxPowerBin=k];
}
if (power_spectrum[k]<min) min=power_spectrum[minPowerBin=k];
totalPower += power_spectrum[k];
}
if (getSize() % 2 == 0){ /* N is even */
power_spectrum[getSize()/2] = out[getSize()/2]*out[getSize()/2]; /* Nyquist freq. */
if (power_spectrum[getSize()/2]>max)
max=power_spectrum[maxPowerBin=getSize()/2];
if (power_spectrum[getSize()/2]<min)
min=power_spectrum[minPowerBin=getSize()/2];
totalPower += power_spectrum[getSize()/2];
}
return maxPowerBin;
}
int realFFTData::
sqrtPowerSpec(){
double max=-MAXDOUBLE;
for (int k = 0; k < (getSize()+1)/2; ++k) /* (k < N/2 rounded up) */
if ((power_spectrum[k]=sqrt(power_spectrum[k]))>max)
max=power_spectrum[maxPowerBin=k];
return maxPowerBin;
}
/*
int realFFTData::
powerSpecDeriv(){
if (!powerDeriv){ // create memory if it doesn't exist
powerDeriv = new fftw_real[size/2+1];
if (!powerDeriv){
std::cerr << "Could not allocate enough mem for a powerSpectrum deriv"<<std::endl;
exit(-1);
}
}
int pos=0;
double max = 0.0;
powerDeriv[0] = 0.0; // DC component
for (int k = 1; k < (getSize()+1)/2; ++k){ // (k < N/2 rounded up)
if (fabs(powerDeriv[k] = power_spectrum[k]-power_spectrum[k-1]) > max){
max = fabs(powerDeriv[k] = power_spectrum[k]-power_spectrum[k-1]);
pos = k;
}
}
if (getSize() % 2 == 0) // N is even
if (fabs(powerDeriv[getSize()/2] = power_spectrum[getSize()/2]-power_spectrum[getSize()/2-1]) > max){
max = fabs(powerDeriv[getSize()/2] = power_spectrum[getSize()/2]-power_spectrum[getSize()/2-1]);
pos = getSize()/2;
}
return pos;
}
*/
void realFFTData::
zeroFFTData(void){
//cout<<"here"<<std::endl;
for (int i=0;i<getSize();i++)
out[i]=0.0;
}
|