File: MapPotOnGeom.py

package info (click to toggle)
mgltools-dejavu 1.5.7-1
  • links: PTS, VCS
  • area: non-free
  • in suites: stretch
  • size: 5,144 kB
  • ctags: 4,112
  • sloc: python: 51,144; sh: 78; makefile: 12
file content (384 lines) | stat: -rw-r--r-- 35,669 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
########################################################################
#
#    Vision Macro - Python source code - file generated by vision
#    Monday 06 March 2006 12:05:47 
#    
#       The Scripps Research Institute (TSRI)
#       Molecular Graphics Lab
#       La Jolla, CA 92037, USA
#
# Copyright: Daniel Stoffler, Michel Sanner and TSRI
#   
# revision: Guillaume Vareille
#  
#########################################################################
#
# $Header$
#
# $Id$
#

from NetworkEditor.macros import MacroNode
class MapPotOnGeom(MacroNode):

    def __init__(self, constrkw={}, name='Map Pot On Geom', **kw):
        kw['name'] = name
        apply( MacroNode.__init__, (self,), kw)

    def beforeAddingToNetwork(self, net):
        MacroNode.beforeAddingToNetwork(self, net)
        ## loading libraries ##
        from Volume.VisionInterface.VolumeNodes import vollib
        net.editor.addLibraryInstance(vollib,"Volume.VisionInterface.VolumeNodes", "vollib")

        from Vision.StandardNodes import stdlib
        net.editor.addLibraryInstance(stdlib,"Vision.StandardNodes", "stdlib")

        from DejaVu.VisionInterface.DejaVuNodes import vizlib
        net.editor.addLibraryInstance(vizlib,"DejaVu.VisionInterface.DejaVuNodes", "vizlib")


    def afterAddingToNetwork(self):
        from NetworkEditor.macros import MacroNode
        MacroNode.afterAddingToNetwork(self)
        ## loading libraries ##
        from Volume.VisionInterface.VolumeNodes import vollib
        from Vision.StandardNodes import stdlib
        from DejaVu.VisionInterface.DejaVuNodes import vizlib
        ## building macro network ##
        Map_Pot_On_Geom_0 = self
        from traceback import print_exc

        ## loading libraries ##
        from Volume.VisionInterface.VolumeNodes import vollib
        self.macroNetwork.getEditor().addLibraryInstance(vollib,"Volume.VisionInterface.VolumeNodes", "vollib")

        from Vision.StandardNodes import stdlib
        self.macroNetwork.getEditor().addLibraryInstance(stdlib,"Vision.StandardNodes", "stdlib")

        from DejaVu.VisionInterface.DejaVuNodes import vizlib
        self.macroNetwork.getEditor().addLibraryInstance(vizlib,"DejaVu.VisionInterface.DejaVuNodes", "vizlib")

        try:

            ## saving node input Ports ##
            input_Ports_1 = self.macroNetwork.ipNode
        except:
            print "WARNING: failed to restore MacroInputNode named input Ports in network self.macroNetwork"
            print_exc()
            input_Ports_1=None
        try:

            ## saving node output Ports ##
            output_Ports_2 = self.macroNetwork.opNode
            output_Ports_2.move(230, 578)
        except:
            print "WARNING: failed to restore MacroOutputNode named output Ports in network self.macroNetwork"
            print_exc()
            output_Ports_2=None
        try:

            ## saving node getSurfaceVFN ##
            from DejaVu.VisionInterface.DejaVuNodes import getSurfaceVFN
            getSurfaceVFN_3 = getSurfaceVFN(constrkw = {}, name='getSurfaceVFN', library=vizlib)
            self.macroNetwork.addNode(getSurfaceVFN_3,55,83)
            apply(getSurfaceVFN_3.inputPortByName['geometry'].configure, (), {'color': 'red', 'cast': True, 'shape': 'rect'})
            apply(getSurfaceVFN_3.outputPortByName['geom'].configure, (), {'color': 'red', 'shape': 'rect'})
            apply(getSurfaceVFN_3.outputPortByName['vertices'].configure, (), {'color': 'green', 'shape': 'rect'})
            apply(getSurfaceVFN_3.outputPortByName['faces'].configure, (), {'color': 'purple', 'shape': 'rect'})
            apply(getSurfaceVFN_3.outputPortByName['normals'].configure, (), {'color': 'blue', 'shape': 'rect'})
        except:
            print "WARNING: failed to restore getSurfaceVFN named getSurfaceVFN in network self.macroNetwork"
            print_exc()
            getSurfaceVFN_3=None
        try:

            ## saving node mul ##
            from Vision.StandardNodes import Operator2
            mul_4 = Operator2(constrkw = {}, name='mul', library=stdlib)
            self.macroNetwork.addNode(mul_4,309,139)
            apply(mul_4.inputPortByName['data1'].configure, (), {'datatype': 'normals3D', 'cast': True, 'shape': 'rect', 'color': 'blue'})
            apply(mul_4.inputPortByName['data2'].configure, (), {'datatype': 'float', 'cast': True, 'shape': 'circle', 'color': 'green'})
            apply(mul_4.inputPortByName['operation'].configure, (), {'color': 'white', 'cast': True, 'shape': 'diamond'})
            apply(mul_4.inputPortByName['applyToElements'].configure, (), {'color': 'yellow', 'cast': True, 'shape': 'circle'})
            apply(mul_4.outputPortByName['result'].configure, (), {'color': 'white', 'shape': 'diamond'})
            mul_4.inputPortByName['operation'].widget.set("mul", run=False)
            mul_4.inputPortByName['applyToElements'].widget.set(1, run=False)
            apply(mul_4.configure, (), {'expanded': False})
        except:
            print "WARNING: failed to restore Operator2 named mul in network self.macroNetwork"
            print_exc()
            mul_4=None
        try:

            ## saving node Offset ##
            from Vision.StandardNodes import DialNE
            Offset_5 = DialNE(constrkw = {}, name='Offset', library=stdlib)
            self.macroNetwork.addNode(Offset_5,390,20)
            apply(Offset_5.inputPortByName['dial'].configure, (), {'color': 'green', 'cast': True, 'shape': 'circle'})
            apply(Offset_5.inputPortByName['mini'].configure, (), {'color': 'green', 'cast': True, 'shape': 'circle'})
            apply(Offset_5.inputPortByName['maxi'].configure, (), {'color': 'green', 'cast': True, 'shape': 'circle'})
            apply(Offset_5.outputPortByName['value'].configure, (), {'color': 'green', 'shape': 'circle'})
            Offset_5.inputPortByName['dial'].widget.set(1.01, run=False)
        except:
            print "WARNING: failed to restore DialNE named Offset in network self.macroNetwork"
            print_exc()
            Offset_5=None
        try:

            ## saving node add ##
            from Vision.StandardNodes import Operator2
            add_6 = Operator2(constrkw = {}, name='add', library=stdlib)
            self.macroNetwork.addNode(add_6,253,183)
            apply(add_6.inputPortByName['data1'].configure, (), {'datatype': 'coordinates3D', 'cast': True, 'shape': 'rect', 'color': 'green'})
            apply(add_6.inputPortByName['data2'].configure, (), {'color': 'white', 'cast': True, 'shape': 'diamond'})
            apply(add_6.inputPortByName['operation'].configure, (), {'color': 'white', 'cast': True, 'shape': 'diamond'})
            apply(add_6.inputPortByName['applyToElements'].configure, (), {'color': 'yellow', 'cast': True, 'shape': 'circle'})
            apply(add_6.outputPortByName['result'].configure, (), {'color': 'white', 'shape': 'diamond'})
            add_6.inputPortByName['operation'].widget.set("add", run=False)
            add_6.inputPortByName['applyToElements'].widget.set(1, run=False)
            apply(add_6.configure, (), {'expanded': False})
        except:
            print "WARNING: failed to restore Operator2 named add in network self.macroNetwork"
            print_exc()
            add_6=None
        try:

            ## saving node triInterp ##
            from Volume.VisionInterface.VolumeNodes import TriInterp
            triInterp_7 = TriInterp(constrkw = {}, name='triInterp', library=vollib)
            self.macroNetwork.addNode(triInterp_7,189,270)
            apply(triInterp_7.inputPortByName['grid'].configure, (), {'color': '#995699', 'cast': True, 'shape': 'diamond'})
            apply(triInterp_7.inputPortByName['points'].configure, (), {'datatype': 'list', 'cast': True, 'shape': 'oval', 'color': 'cyan'})
            apply(triInterp_7.outputPortByName['data'].configure, (), {'color': 'cyan', 'shape': 'oval'})
        except:
            print "WARNING: failed to restore TriInterp named triInterp in network self.macroNetwork"
            print_exc()
            triInterp_7=None
        try:

            ## saving node Color Map ##
            from DejaVu.VisionInterface.DejaVuNodes import ColorMapNE
            Color_Map_9 = ColorMapNE(constrkw = {}, name='Color Map', library=vizlib)
            self.macroNetwork.addNode(Color_Map_9,213,433)
            apply(Color_Map_9.inputPortByName['colorMap'].configure, (), {'color': 'magenta', 'cast': True, 'shape': 'rect'})
            apply(Color_Map_9.inputPortByName['values'].configure, (), {'color': 'cyan', 'cast': True, 'shape': 'oval'})
            apply(Color_Map_9.inputPortByName['mini'].configure, (), {'color': 'green', 'cast': True, 'shape': 'circle'})
            apply(Color_Map_9.inputPortByName['maxi'].configure, (), {'color': 'green', 'cast': True, 'shape': 'circle'})
            apply(Color_Map_9.inputPortByName['filename'].configure, (), {'color': 'white', 'cast': True, 'shape': 'oval'})
            apply(Color_Map_9.outputPortByName['mappedColors'].configure, (), {'color': 'orange', 'shape': 'rect'})
            apply(Color_Map_9.outputPortByName['colorMap'].configure, (), {'color': 'magenta', 'shape': 'rect'})
            apply(Color_Map_9.outputPortByName['legend'].configure, (), {'color': 'red', 'shape': 'rect'})
            Color_Map_9.inputPortByName['colorMap'].widget.set({'mini': None, 'maxi': None, 'ramp': [[1.0, 0.0, 0.0, 1.0], [1.0, 0.0060000000000000053, 0.0060000000000000053, 1.0], [1.0, 0.01100000000000001, 0.01100000000000001, 1.0], [1.0, 0.02300000000000002, 0.02300000000000002, 1.0], [1.0, 0.029000000000000026, 0.029000000000000026, 1.0], [1.0, 0.03400000000000003, 0.03400000000000003, 1.0], [1.0, 0.046000000000000041, 0.046000000000000041, 1.0], [1.0, 0.051000000000000045, 0.051000000000000045, 1.0], [1.0, 0.057000000000000051, 0.057000000000000051, 1.0], [1.0, 0.06899999999999995, 0.06899999999999995, 1.0], [1.0, 0.073999999999999955, 0.073999999999999955, 1.0], [1.0, 0.085999999999999965, 0.085999999999999965, 1.0], [1.0, 0.09099999999999997, 0.09099999999999997, 1.0], [1.0, 0.096999999999999975, 0.096999999999999975, 1.0], [1.0, 0.10899999999999999, 0.10899999999999999, 1.0], [1.0, 0.11399999999999999, 0.11399999999999999, 1.0], [1.0, 0.12, 0.12, 1.0], [1.0, 0.13100000000000001, 0.13100000000000001, 1.0], [1.0, 0.13700000000000001, 0.13700000000000001, 1.0], [1.0, 0.14300000000000002, 0.14300000000000002, 1.0], [1.0, 0.15400000000000003, 0.15400000000000003, 1.0], [1.0, 0.16000000000000003, 0.16000000000000003, 1.0], [1.0, 0.17100000000000004, 0.17100000000000004, 1.0], [1.0, 0.17700000000000005, 0.17700000000000005, 1.0], [1.0, 0.18300000000000005, 0.18300000000000005, 1.0], [1.0, 0.19399999999999995, 0.19399999999999995, 1.0], [1.0, 0.19999999999999996, 0.19999999999999996, 1.0], [1.0, 0.20599999999999996, 0.20599999999999996, 1.0], [1.0, 0.21699999999999997, 0.21699999999999997, 1.0], [1.0, 0.22299999999999998, 0.22299999999999998, 1.0], [1.0, 0.23399999999999999, 0.23399999999999999, 1.0], [1.0, 0.23999999999999999, 0.23999999999999999, 1.0], [1.0, 0.246, 0.246, 1.0], [1.0, 0.25700000000000001, 0.25700000000000001, 1.0], [1.0, 0.26300000000000001, 0.26300000000000001, 1.0], [1.0, 0.26900000000000002, 0.26900000000000002, 1.0], [1.0, 0.28000000000000003, 0.28000000000000003, 1.0], [1.0, 0.28600000000000003, 0.28600000000000003, 1.0], [1.0, 0.29100000000000004, 0.29100000000000004, 1.0], [1.0, 0.30300000000000005, 0.30300000000000005, 1.0], [1.0, 0.30900000000000005, 0.30900000000000005, 1.0], [1.0, 0.31999999999999995, 0.31999999999999995, 1.0], [1.0, 0.32599999999999996, 0.32599999999999996, 1.0], [1.0, 0.33099999999999996, 0.33099999999999996, 1.0], [1.0, 0.34299999999999997, 0.34299999999999997, 1.0], [1.0, 0.34899999999999998, 0.34899999999999998, 1.0], [1.0, 0.35399999999999998, 0.35399999999999998, 1.0], [1.0, 0.36599999999999999, 0.36599999999999999, 1.0], [1.0, 0.371, 0.371, 1.0], [1.0, 0.377, 0.377, 1.0], [1.0, 0.38900000000000001, 0.38900000000000001, 1.0], [1.0, 0.39400000000000002, 0.39400000000000002, 1.0], [1.0, 0.40600000000000003, 0.40600000000000003, 1.0], [1.0, 0.41100000000000003, 0.41100000000000003, 1.0], [1.0, 0.41700000000000004, 0.41700000000000004, 1.0], [1.0, 0.42900000000000005, 0.42900000000000005, 1.0], [1.0, 0.43400000000000005, 0.43400000000000005, 1.0], [1.0, 0.43999999999999995, 0.43999999999999995, 1.0], [1.0, 0.45099999999999996, 0.45099999999999996, 1.0], [1.0, 0.45699999999999996, 0.45699999999999996, 1.0], [1.0, 0.46899999999999997, 0.46899999999999997, 1.0], [1.0, 0.47399999999999998, 0.47399999999999998, 1.0], [1.0, 0.47999999999999998, 0.47999999999999998, 1.0], [1.0, 0.49099999999999999, 0.49099999999999999, 1.0], [1.0, 0.497, 0.497, 1.0], [1.0, 0.503, 0.503, 1.0], [1.0, 0.51400000000000001, 0.51400000000000001, 1.0], [1.0, 0.52000000000000002, 0.52000000000000002, 1.0], [1.0, 0.52600000000000002, 0.52600000000000002, 1.0], [1.0, 0.53699999999999992, 0.53699999999999992, 1.0], [1.0, 0.54299999999999993, 0.54299999999999993, 1.0], [1.0, 0.55400000000000005, 0.55400000000000005, 1.0], [1.0, 0.56000000000000005, 0.56000000000000005, 1.0], [1.0, 0.56600000000000006, 0.56600000000000006, 1.0], [1.0, 0.57699999999999996, 0.57699999999999996, 1.0], [1.0, 0.58299999999999996, 0.58299999999999996, 1.0], [1.0, 0.58899999999999997, 0.58899999999999997, 1.0], [1.0, 0.59999999999999998, 0.59999999999999998, 1.0], [1.0, 0.60599999999999998, 0.60599999999999998, 1.0], [1.0, 0.61699999999999999, 0.61699999999999999, 1.0], [1.0, 0.623, 0.623, 1.0], [1.0, 0.629, 0.629, 1.0], [1.0, 0.64000000000000001, 0.64000000000000001, 1.0], [1.0, 0.64600000000000002, 0.64600000000000002, 1.0], [1.0, 0.65100000000000002, 0.65100000000000002, 1.0], [1.0, 0.66300000000000003, 0.66300000000000003, 1.0], [1.0, 0.66900000000000004, 0.66900000000000004, 1.0], [1.0, 0.67399999999999993, 0.67399999999999993, 1.0], [1.0, 0.68599999999999994, 0.68599999999999994, 1.0], [1.0, 0.69100000000000006, 0.69100000000000006, 1.0], [1.0, 0.70300000000000007, 0.70300000000000007, 1.0], [1.0, 0.70900000000000007, 0.70900000000000007, 1.0], [1.0, 0.71399999999999997, 0.71399999999999997, 1.0], [1.0, 0.72599999999999998, 0.72599999999999998, 1.0], [1.0, 0.73099999999999998, 0.73099999999999998, 1.0], [1.0, 0.73699999999999999, 0.73699999999999999, 1.0], [1.0, 0.749, 0.749, 1.0], [1.0, 0.754, 0.754, 1.0], [1.0, 0.76000000000000001, 0.76000000000000001, 1.0], [1.0, 0.77100000000000002, 0.77100000000000002, 1.0], [1.0, 0.77700000000000002, 0.77700000000000002, 1.0], [1.0, 0.78900000000000003, 0.78900000000000003, 1.0], [1.0, 0.79400000000000004, 0.79400000000000004, 1.0], [1.0, 0.80000000000000004, 0.80000000000000004, 1.0], [1.0, 0.81099999999999994, 0.81099999999999994, 1.0], [1.0, 0.81699999999999995, 0.81699999999999995, 1.0], [1.0, 0.82299999999999995, 0.82299999999999995, 1.0], [1.0, 0.83399999999999996, 0.83399999999999996, 1.0], [1.0, 0.83999999999999997, 0.83999999999999997, 1.0], [1.0, 0.85099999999999998, 0.85099999999999998, 1.0], [1.0, 0.85699999999999998, 0.85699999999999998, 1.0], [1.0, 0.86299999999999999, 0.86299999999999999, 1.0], [1.0, 0.874, 0.874, 1.0], [1.0, 0.88, 0.88, 1.0], [1.0, 0.88600000000000001, 0.88600000000000001, 1.0], [1.0, 0.89700000000000002, 0.89700000000000002, 1.0], [1.0, 0.90300000000000002, 0.90300000000000002, 1.0], [1.0, 0.90900000000000003, 0.90900000000000003, 1.0], [1.0, 0.92000000000000004, 0.92000000000000004, 1.0], [1.0, 0.92600000000000005, 0.92600000000000005, 1.0], [1.0, 0.93700000000000006, 0.93700000000000006, 1.0], [1.0, 0.94299999999999995, 0.94299999999999995, 1.0], [1.0, 0.94899999999999995, 0.94899999999999995, 1.0], [1.0, 0.95999999999999996, 0.95999999999999996, 1.0], [1.0, 0.96599999999999997, 0.96599999999999997, 1.0], [1.0, 0.97099999999999997, 0.97099999999999997, 1.0], [1.0, 0.98299999999999998, 0.98299999999999998, 1.0], [1.0, 0.98899999999999999, 0.98899999999999999, 1.0], [1.0, 1.0, 1.0, 1.0], [1.0, 1.0, 1.0, 1.0], [0.98902199999999996, 0.98899999999999999, 1.0, 1.0], [1.0, 1.0, 1.0, 1.0], [0.97105799999999998, 0.97099999999999997, 1.0, 1.0], [0.96606800000000004, 0.96599999999999997, 1.0, 1.0], [0.95409199999999994, 0.95399999999999996, 1.0, 1.0], [0.949102, 0.94899999999999995, 1.0, 1.0], [0.93712600000000013, 0.93700000000000006, 1.0, 1.0], [0.93113800000000013, 0.93100000000000005, 1.0, 1.0], [0.92614800000000008, 0.92600000000000005, 1.0, 1.0], [0.9141720000000001, 0.91400000000000003, 1.0, 1.0], [0.90918200000000005, 0.90900000000000003, 1.0, 1.0], [0.90319400000000005, 0.90300000000000002, 1.0, 1.0], [0.89121800000000007, 0.89100000000000001, 1.0, 1.0], [0.88622800000000013, 0.88600000000000001, 1.0, 1.0], [0.87425200000000003, 0.874, 1.0, 1.0], [0.86926200000000009, 0.86899999999999999, 1.0, 1.0], [0.8632740000000001, 0.86299999999999999, 1.0, 1.0], [0.85129800000000011, 0.85099999999999998, 1.0, 1.0], [0.84630800000000006, 0.84599999999999997, 1.0, 1.0], [0.84032000000000007, 0.83999999999999997, 1.0, 1.0], [0.82934200000000002, 0.82899999999999996, 1.0, 1.0], [0.82335400000000014, 0.82299999999999995, 1.0, 1.0], [0.81137800000000004, 0.81099999999999994, 1.0, 1.0], [0.80638800000000022, 0.80600000000000005, 1.0, 1.0], [0.80040000000000022, 0.80000000000000004, 1.0, 1.0], [0.78942200000000018, 0.78900000000000003, 1.0, 1.0], [0.78343400000000019, 0.78300000000000003, 1.0, 1.0], [0.77744600000000019, 0.77700000000000002, 1.0, 1.0], [0.76646800000000015, 0.76600000000000001, 1.0, 1.0], [0.76048000000000016, 0.76000000000000001, 1.0, 1.0], [0.74950200000000011, 0.749, 1.0, 1.0], [0.74351400000000023, 0.74299999999999999, 1.0, 1.0], [0.73752600000000013, 0.73699999999999999, 1.0, 1.0], [0.72654800000000019, 0.72599999999999998, 1.0, 1.0], [0.72056000000000009, 0.71999999999999997, 1.0, 1.0], [0.71457200000000021, 0.71399999999999997, 1.0, 1.0], [0.70359400000000027, 0.70300000000000007, 1.0, 1.0], [0.69760600000000028, 0.69700000000000006, 1.0, 1.0], [0.68662800000000013, 0.68599999999999994, 1.0, 1.0], [0.68064000000000013, 0.67999999999999994, 1.0, 1.0], [0.67465200000000014, 0.67399999999999993, 1.0, 1.0], [0.66367400000000032, 0.66300000000000003, 1.0, 1.0], [0.65768600000000021, 0.65700000000000003, 1.0, 1.0], [0.64670800000000028, 0.64600000000000002, 1.0, 1.0], [0.64072000000000018, 0.64000000000000001, 1.0, 1.0], [0.6347320000000003, 0.63400000000000001, 1.0, 1.0], [0.62375400000000025, 0.623, 1.0, 1.0], [0.61776600000000026, 0.61699999999999999, 1.0, 1.0], [0.61177800000000027, 0.61099999999999999, 1.0, 1.0], [0.60080000000000022, 0.59999999999999998, 1.0, 1.0], [0.59481200000000023, 0.59399999999999997, 1.0, 1.0], [0.58383400000000019, 0.58299999999999996, 1.0, 1.0], [0.5778460000000003, 0.57699999999999996, 1.0, 1.0], [0.5718580000000002, 0.57099999999999995, 1.0, 1.0], [0.56088000000000027, 0.56000000000000005, 1.0, 1.0], [0.55489200000000038, 0.55400000000000005, 1.0, 1.0], [0.54990200000000022, 0.54899999999999993, 1.0, 1.0], [0.53792600000000024, 0.53699999999999992, 1.0, 1.0], [0.53193800000000035, 0.53100000000000003, 1.0, 1.0], [0.52096000000000031, 0.52000000000000002, 1.0, 1.0], [0.51497200000000032, 0.51400000000000001, 1.0, 1.0], [0.50998200000000038, 0.50900000000000001, 1.0, 1.0], [0.49800600000000028, 0.497, 1.0, 1.0], [0.49201800000000029, 0.49099999999999999, 1.0, 1.0], [0.48702800000000035, 0.48599999999999999, 1.0, 1.0], [0.47505200000000036, 0.47399999999999998, 1.0, 1.0], [0.47006200000000031, 0.46899999999999997, 1.0, 1.0], [0.45808600000000033, 0.45699999999999996, 1.0, 1.0], [0.45209800000000033, 0.45099999999999996, 1.0, 1.0], [0.44710800000000028, 0.44599999999999995, 1.0, 1.0], [0.43513200000000041, 0.43400000000000005, 1.0, 1.0], [0.43014200000000047, 0.42900000000000005, 1.0, 1.0], [0.42415400000000048, 0.42300000000000004, 1.0, 1.0], [0.41217800000000038, 0.41100000000000003, 1.0, 1.0], [0.40718800000000044, 0.40600000000000003, 1.0, 1.0], [0.39521200000000045, 0.39400000000000002, 1.0, 1.0], [0.3902220000000004, 0.38900000000000001, 1.0, 1.0], [0.38423400000000041, 0.38300000000000001, 1.0, 1.0], [0.37225800000000042, 0.371, 1.0, 1.0], [0.36726800000000037, 0.36599999999999999, 1.0, 1.0], [0.36128000000000038, 0.35999999999999999, 1.0, 1.0], [0.35030200000000045, 0.34899999999999998, 1.0, 1.0], [0.34431400000000045, 0.34299999999999997, 1.0, 1.0], [0.33233800000000036, 0.33099999999999996, 1.0, 1.0], [0.32734800000000042, 0.32599999999999996, 1.0, 1.0], [0.32136000000000042, 0.31999999999999995, 1.0, 1.0], [0.31038200000000049, 0.30900000000000005, 1.0, 1.0], [0.3043940000000005, 0.30300000000000005, 1.0, 1.0], [0.29241800000000051, 0.29100000000000004, 1.0, 1.0], [0.28742800000000046, 0.28600000000000003, 1.0, 1.0], [0.28144000000000047, 0.28000000000000003, 1.0, 1.0], [0.27046200000000054, 0.26900000000000002, 1.0, 1.0], [0.26447400000000054, 0.26300000000000001, 1.0, 1.0], [0.25848600000000055, 0.25700000000000001, 1.0, 1.0], [0.24750800000000051, 0.246, 1.0, 1.0], [0.24152000000000051, 0.23999999999999999, 1.0, 1.0], [0.23054200000000047, 0.22899999999999998, 1.0, 1.0], [0.22455400000000048, 0.22299999999999998, 1.0, 1.0], [0.21856600000000048, 0.21699999999999997, 1.0, 1.0], [0.20758800000000044, 0.20599999999999996, 1.0, 1.0], [0.20160000000000045, 0.19999999999999996, 1.0, 1.0], [0.19561200000000045, 0.19399999999999995, 1.0, 1.0], [0.18463400000000063, 0.18300000000000005, 1.0, 1.0], [0.17864600000000064, 0.17700000000000005, 1.0, 1.0], [0.16766800000000059, 0.16600000000000004, 1.0, 1.0], [0.1616800000000006, 0.16000000000000003, 1.0, 1.0], [0.15569200000000061, 0.15400000000000003, 1.0, 1.0], [0.14471400000000056, 0.14300000000000002, 1.0, 1.0], [0.13872600000000057, 0.13700000000000001, 1.0, 1.0], [0.13273800000000058, 0.13100000000000001, 1.0, 1.0], [0.12176000000000053, 0.12, 1.0, 1.0], [0.11577200000000054, 0.11399999999999999, 1.0, 1.0], [0.10479400000000061, 0.10299999999999998, 1.0, 1.0], [0.098806000000000616, 0.096999999999999975, 1.0, 1.0], [0.092818000000000622, 0.09099999999999997, 1.0, 1.0], [0.081840000000000579, 0.07999999999999996, 1.0, 1.0], [0.075852000000000586, 0.073999999999999955, 1.0, 1.0], [0.070862000000000536, 0.06899999999999995, 1.0, 1.0], [0.05888600000000066, 0.057000000000000051, 1.0, 1.0], [0.052898000000000667, 0.051000000000000045, 1.0, 1.0], [0.041920000000000623, 0.040000000000000036, 1.0, 1.0], [0.03593200000000063, 0.03400000000000003, 1.0, 1.0], [0.030942000000000691, 0.029000000000000026, 1.0, 1.0], [0.018966000000000705, 0.017000000000000015, 1.0, 1.0], [0.012978000000000711, 0.01100000000000001, 1.0, 1.0], [0.0020000000000006679, 0.0, 1.0, 1.0]], 'name': 'cmap'}, run=False)
        except:
            print "WARNING: failed to restore ColorMap named Color Map in network self.macroNetwork"
            print_exc()
            Color_Map_9=None
        try:

            ## saving node call method ##
            from Vision.StandardNodes import CallMethod
            call_method_10 = CallMethod(constrkw = {}, name='call method', library=stdlib)
            self.macroNetwork.addNode(call_method_10,179,501)
            apply(call_method_10.inputPortByName['objects'].configure, (), {'datatype': 'geom', 'cast': True, 'shape': 'rect', 'color': 'red'})
            apply(call_method_10.inputPortByName['signature'].configure, (), {'color': 'white', 'cast': True, 'shape': 'oval'})
            apply(call_method_10.addInputPort, (), {'name': 'materials', 'cast': True, 'datatype': 'colorfloat3or4(0)', 'required': False, 'height': 8, 'width': 12, 'shape': 'rect', 'color': 'orange'})
            apply(call_method_10.addInputPort, (), {'name': 'inheritMaterial', 'cast': True, 'datatype': 'int', 'required': False, 'height': 12, 'width': 12, 'shape': 'circle', 'color': 'yellow'})
            apply(call_method_10.outputPortByName['objects'].configure, (), {'color': 'white', 'shape': 'diamond'})
            apply(call_method_10.outputPortByName['results'].configure, (), {'color': 'white', 'shape': 'diamond'})
            call_method_10.inputPortByName['signature'].widget.set("Set materials inheritMaterial", run=False)
        except:
            print "WARNING: failed to restore CallMethod named call method in network self.macroNetwork"
            print_exc()
            call_method_10=None
        try:

            ## saving node Checkbutton ##
            from Vision.StandardNodes import CheckButtonNE
            Checkbutton_11 = CheckButtonNE(constrkw = {}, name='Checkbutton', library=stdlib)
            self.macroNetwork.addNode(Checkbutton_11,346,478)
            apply(Checkbutton_11.inputPortByName['button'].configure, (), {'color': 'yellow', 'cast': True, 'shape': 'circle'})
            apply(Checkbutton_11.outputPortByName['value'].configure, (), {'color': 'yellow', 'shape': 'circle'})
        except:
            print "WARNING: failed to restore CheckButtonNE named Checkbutton in network self.macroNetwork"
            print_exc()
            Checkbutton_11=None
        try:

            ## saving node Redraw ##
            from DejaVu.VisionInterface.DejaVuNodes import Redraw
            Redraw_12 = Redraw(constrkw = {}, name='Redraw', library=vizlib)
            self.macroNetwork.addNode(Redraw_12,41,518)
            apply(Redraw_12.inputPortByName['viewer'].configure, (), {'color': 'yellow', 'cast': True, 'shape': 'rect'})
            apply(Redraw_12.inputPortByName['trigger'].configure, (), {'color': 'white', 'cast': True, 'shape': 'diamond'})
        except:
            print "WARNING: failed to restore Redraw named Redraw in network self.macroNetwork"
            print_exc()
            Redraw_12=None
        try:

            ## saving node neg ##
            from Vision.StandardNodes import Operator1
            neg_13 = Operator1(constrkw = {}, name='neg', library=stdlib)
            self.macroNetwork.addNode(neg_13,288,321)
            apply(neg_13.inputPortByName['data'].configure, (), {'color': 'white', 'cast': True, 'shape': 'diamond'})
            apply(neg_13.inputPortByName['operation'].configure, (), {'color': 'white', 'cast': True, 'shape': 'diamond'})
            apply(neg_13.inputPortByName['applyToElements'].configure, (), {'color': 'yellow', 'cast': True, 'shape': 'circle'})
            apply(neg_13.outputPortByName['result'].configure, (), {'color': 'white', 'shape': 'diamond'})
            neg_13.inputPortByName['operation'].widget.set("neg", run=False)
            apply(neg_13.configure, (), {'expanded': False})
        except:
            print "WARNING: failed to restore Operator1 named neg in network self.macroNetwork"
            print_exc()
            neg_13=None
        try:

            ## saving node Get viewer ##
            from Vision.StandardNodes import GetAttr
            Get_viewer_14 = GetAttr(constrkw = {}, name='Get viewer', library=stdlib)
            self.macroNetwork.addNode(Get_viewer_14,18,324)
            apply(Get_viewer_14.inputPortByName['objects'].configure, (), {'color': 'white', 'cast': True, 'shape': 'diamond'})
            apply(Get_viewer_14.inputPortByName['attr'].configure, (), {'color': 'white', 'cast': True, 'shape': 'oval'})
            apply(Get_viewer_14.outputPortByName['attrs'].configure, (), {'color': 'cyan', 'shape': 'oval'})
            apply(Get_viewer_14.inputPortByName['attr'].widget.configure, (), {'choices': ('viewer',)})
            Get_viewer_14.inputPortByName['attr'].widget.set("viewer", run=False)
        except:
            print "WARNING: failed to restore GetAttr named Get viewer in network self.macroNetwork"
            print_exc()
            Get_viewer_14=None
        try:

            ## saving node Slice Data ##
            from Vision.StandardNodes import SliceData
            Slice_Data_15 = SliceData(constrkw = {}, name='Slice Data', library=stdlib)
            self.macroNetwork.addNode(Slice_Data_15,29,421)
            apply(Slice_Data_15.inputPortByName['data'].configure, (), {'datatype': 'list', 'cast': True, 'shape': 'oval', 'color': 'cyan'})
            apply(Slice_Data_15.inputPortByName['_slice'].configure, (), {'color': 'white', 'cast': True, 'shape': 'diamond'})
            apply(Slice_Data_15.outputPortByName['data'].configure, (), {'color': 'white', 'shape': 'diamond'})
            Slice_Data_15.inputPortByName['_slice'].widget.set("[0]", run=False)
        except:
            print "WARNING: failed to restore SliceData named Slice Data in network self.macroNetwork"
            print_exc()
            Slice_Data_15=None
        try:

            ## saving node stddev ##
            from Vision.StandardNodes import StdDev
            stddev_16 = StdDev(constrkw = {}, name='stddev', library=stdlib)
            self.macroNetwork.addNode(stddev_16,339,230)
            apply(stddev_16.inputPortByName['values'].configure, (), {'color': 'cyan', 'cast': True, 'shape': 'oval'})
            apply(stddev_16.outputPortByName['stddev'].configure, (), {'color': 'green', 'shape': 'circle'})
        except:
            print "WARNING: failed to restore StdDev named stddev in network self.macroNetwork"
            print_exc()
            stddev_16=None
        try:

            ## saving node Dial ##
            from Vision.StandardNodes import DialNE
            Dial_17 = DialNE(constrkw = {}, name='Dial', library=stdlib)
            self.macroNetwork.addNode(Dial_17,412,152)
            apply(Dial_17.inputPortByName['dial'].configure, (), {'color': 'green', 'cast': True, 'shape': 'circle'})
            apply(Dial_17.inputPortByName['mini'].configure, (), {'color': 'green', 'cast': True, 'shape': 'circle'})
            apply(Dial_17.inputPortByName['maxi'].configure, (), {'color': 'green', 'cast': True, 'shape': 'circle'})
            apply(Dial_17.outputPortByName['value'].configure, (), {'color': 'green', 'shape': 'circle'})
            Dial_17.inputPortByName['dial'].widget.set(5.0, run=False)
        except:
            print "WARNING: failed to restore DialNE named Dial in network self.macroNetwork"
            print_exc()
            Dial_17=None
        try:

            ## saving node mul ##
            from Vision.StandardNodes import Operator2
            mul_18 = Operator2(constrkw = {}, name='mul', library=stdlib)
            self.macroNetwork.addNode(mul_18,369,347)
            apply(mul_18.inputPortByName['data1'].configure, (), {'datatype': 'float', 'cast': True, 'shape': 'circle', 'color': 'green'})
            apply(mul_18.inputPortByName['data2'].configure, (), {'datatype': 'float', 'cast': True, 'shape': 'circle', 'color': 'green'})
            apply(mul_18.inputPortByName['operation'].configure, (), {'color': 'white', 'cast': True, 'shape': 'diamond'})
            apply(mul_18.inputPortByName['applyToElements'].configure, (), {'color': 'yellow', 'cast': True, 'shape': 'circle'})
            apply(mul_18.outputPortByName['result'].configure, (), {'color': 'white', 'shape': 'diamond'})
            mul_18.inputPortByName['operation'].widget.set("mul", run=False)
            apply(mul_18.configure, (), {'expanded': False})
        except:
            print "WARNING: failed to restore Operator2 named mul in network self.macroNetwork"
            print_exc()
            mul_18=None
        self.macroNetwork.freeze()

        ## saving connections for network Map Pot On Geom ##
        if Offset_5 is not None and mul_4 is not None:
            self.macroNetwork.connectNodes(
                Offset_5, mul_4, "value", "data2", blocking=True)
        if getSurfaceVFN_3 is not None and mul_4 is not None:
            self.macroNetwork.connectNodes(
                getSurfaceVFN_3, mul_4, "normals", "data1", blocking=True)
        if mul_4 is not None and add_6 is not None:
            self.macroNetwork.connectNodes(
                mul_4, add_6, "result", "data2", blocking=True)
        if getSurfaceVFN_3 is not None and add_6 is not None:
            self.macroNetwork.connectNodes(
                getSurfaceVFN_3, add_6, "vertices", "data1", blocking=True)
        if add_6 is not None and triInterp_7 is not None:
            self.macroNetwork.connectNodes(
                add_6, triInterp_7, "result", "points", blocking=True)
        if getSurfaceVFN_3 is not None and call_method_10 is not None:
            self.macroNetwork.connectNodes(
                getSurfaceVFN_3, call_method_10, "geom", "objects", blocking=True)
        if Checkbutton_11 is not None and call_method_10 is not None:
            self.macroNetwork.connectNodes(
                Checkbutton_11, call_method_10, "value", "inheritMaterial", blocking=True)
        if call_method_10 is not None and Redraw_12 is not None:
            self.macroNetwork.connectNodes(
                call_method_10, Redraw_12, "objects", "trigger", blocking=True)
        input_Ports_1 = self.macroNetwork.ipNode
        if input_Ports_1 is not None and getSurfaceVFN_3 is not None:
            self.macroNetwork.connectNodes(
                input_Ports_1, getSurfaceVFN_3, "new", "geometry", blocking=True)
        if getSurfaceVFN_3 is not None and Get_viewer_14 is not None:
            self.macroNetwork.connectNodes(
                getSurfaceVFN_3, Get_viewer_14, "geom", "objects", blocking=True)
        if Get_viewer_14 is not None and Slice_Data_15 is not None:
            self.macroNetwork.connectNodes(
                Get_viewer_14, Slice_Data_15, "attrs", "data", blocking=True)
        if Slice_Data_15 is not None and Redraw_12 is not None:
            self.macroNetwork.connectNodes(
                Slice_Data_15, Redraw_12, "data", "viewer", blocking=True)
        if input_Ports_1 is not None and triInterp_7 is not None:
            self.macroNetwork.connectNodes(
                input_Ports_1, triInterp_7, "new", "grid", blocking=True)
        if triInterp_7 is not None and stddev_16 is not None:
            self.macroNetwork.connectNodes(
                triInterp_7, stddev_16, "data", "values", blocking=True)
        if neg_13 is not None and Color_Map_9 is not None:
            self.macroNetwork.connectNodes(
                neg_13, Color_Map_9, "result", "mini", blocking=True)
        if mul_18 is not None and neg_13 is not None:
            self.macroNetwork.connectNodes(
                mul_18, neg_13, "result", "data", blocking=True)
        if mul_18 is not None and Color_Map_9 is not None:
            self.macroNetwork.connectNodes(
                mul_18, Color_Map_9, "result", "maxi", blocking=True)
        if Dial_17 is not None and mul_18 is not None:
            self.macroNetwork.connectNodes(
                Dial_17, mul_18, "value", "data2", blocking=True)
        if stddev_16 is not None and mul_18 is not None:
            self.macroNetwork.connectNodes(
                stddev_16, mul_18, "stddev", "data1", blocking=True)
        if triInterp_7 is not None and Color_Map_9 is not None:
            self.macroNetwork.connectNodes(
                triInterp_7, Color_Map_9, "data", "values", blocking=True)
        if Color_Map_9 is not None and call_method_10 is not None:
            self.macroNetwork.connectNodes(
                Color_Map_9, call_method_10, "mappedColors", "materials", blocking=True)
        output_Ports_2 = self.macroNetwork.opNode
        if Color_Map_9 is not None and output_Ports_2 is not None:
            self.macroNetwork.connectNodes(
                Color_Map_9, output_Ports_2, "legend", "new", blocking=True)
        self.macroNetwork.unfreeze()

        Map_Pot_On_Geom_0.shrink()

        ## reset modifications ##
        Map_Pot_On_Geom_0.resetTags()
        Map_Pot_On_Geom_0.buildOriginalList()