File: drawNode.py

package info (click to toggle)
mgltools-networkeditor 1.5.7-4
  • links: PTS, VCS
  • area: non-free
  • in suites: buster
  • size: 1,312 kB
  • sloc: python: 17,905; sh: 78; makefile: 10
file content (402 lines) | stat: -rw-r--r-- 15,954 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
########################################################################
#
# Date: Sept 2012  Author: Michel Sanner
#
#       sanner@scripps.edu
#
#       The Scripps Research Institute (TSRI)
#       Molecular Graphics Lab
#       La Jolla, CA 92037, USA
#
# Copyright: Michel Sanner and TSRI
#
#########################################################################
#
# $Header: /opt/cvs/python/packages/share1.5/NetworkEditor/drawNode.py,v 1.2.2.1 2015/08/26 16:41:43 sanner Exp $
#
# $Id: drawNode.py,v 1.2.2.1 2015/08/26 16:41:43 sanner Exp $
#

import cairo, os
from PIL import Image, ImageFilter
from math import sqrt, pi

def dropShadow( image, offset=(5,5), background=0x00ffffff, shadow=0xff000000, 
                border=8, iterations=3):
    # taken from http://code.activestate.com/recipes/474116-drop-shadows-with-pil/
    # modified by Michel Sanner to work with transparency, using masks
    #
    #  adds offset + 2*border padding
    #  the original image is at (border - min(offset[0], 0), border - min(offset[1], 0))
    """
    Add a gaussian blur drop shadow to an image.  
    
    image       - The image to overlay on top of the shadow.
    offset      - Offset of the shadow from the image as an (x,y) tuple.  Can be
                  positive or negative.
    background  - Background colour behind the image.
    shadow      - Shadow colour (darkness).
    border      - Width of the border around the image.  This must be wide
                  enough to account for the blurring of the shadow.
    iterations  - Number of times to apply the filter.  More iterations 
                produce a more blurred shadow, but increase processing time.
    """

    # to fix bug in 1.1.7 http://hg.effbot.org/pil-2009-raclette/changeset/fb7ce579f5f9
    image.load()
    r,g,b,a = image.split()

    # Create the backdrop image -- a box in the background colour with a 
    # shadow on it.
    totalWidth = image.size[0] + abs(offset[0]) + 2*border
    totalHeight = image.size[1] + abs(offset[1]) + 2*border
    back = Image.new(image.mode, (totalWidth, totalHeight), background)
  
    # Place the shadow, taking into account the offset from the image
    shadowLeft = border + max(offset[0], 0)
    shadowTop = border + max(offset[1], 0)
    back.paste(shadow, [shadowLeft, shadowTop, shadowLeft + image.size[0], 
                        shadowTop + image.size[1]], mask=a )
  
    # Apply the filter to blur the edges of the shadow.  Since a small kernel
    # is used, the filter must be applied repeatedly to get a decent blur.
    n = 0
    while n < iterations:
        back = back.filter(ImageFilter.BLUR)
        n += 1
    
    # Paste the input image onto the shadow backdrop  
    imageLeft = border - min(offset[0], 0)
    imageTop = border - min(offset[1], 0)
    back.paste(image, (imageLeft, imageTop), mask=a)
  
    return back, (imageLeft,imageTop) # return offset of original image in new image 


class CairoNodeRenderer:

    def __init__(self):
        self.nodeOutLineWidth = 4
        self.border = 10
        self.bbox = [99999, 99999, 0,0] # node icon bbox


    def drawSquareFlatBox(self, width, height, outline, fill, macro=False):
        # draw the box
        # old version that drew flat boxes (no shadow)
        
        # fill the rectangle with 0.5 alpha
        self.ctx.rectangle( ulx, uly, width, height)
        self.ctx.set_source_rgba(*fill)
        self.ctx.fill()

        # update bbox
        if ulx<self.bbox[0]: self.bbox[0] = ulx
        if uly<self.bbox[1]: self.bbox[1] = uly
        if ulx+width>self.bbox[2]: self.bbox[2] = ulx+width
        if uly+height>self.bbox[3]: self.bbox[3] = uly+height

        # set color
        self.ctx.set_source_rgba(*outline)
        # build a path for a rectangle with 5 pixels padding
        self.ctx.rectangle( ulx, uly, width, height)
        self.ctx.set_line_width(4)
        # the draw the rectangle out line
        self.ctx.stroke()

        if macro:
            # draw outter box
            self.ctx.set_source_rgba(*outline)
            # build a path for a rectangle with 5 pixels padding
            self.ctx.rectangle( ulx+8, uly+8, width-16, height-16)
            self.ctx.set_line_width(4)
            # the draw the rectangle out line
            self.ctx.stroke()


    def roundedRectangle(self, x, y, width, height):
        ctx = self.ctx
        aspect = width / height       # aspect ratio
        corner_radius = height / 5.0 # and corner curvature radius

        radius = corner_radius / aspect
        degrees = pi / 180.0

        ctx.new_sub_path()
        ctx.arc(x + width - radius, y + radius, radius, -90 * degrees, 0 * degrees)
        ctx.arc(x + width - radius, y + height - radius, radius, 0 * degrees, 90 * degrees)
        ctx.arc(x + radius, y + height - radius, radius, 90 * degrees, 180 * degrees)
        ctx.arc(x + radius, y + radius, radius, 180 * degrees, 270 * degrees)

        ctx.close_path()


    def roundedRectangleEdge(self, x, y, width, height, thickness=4):
        ctx = self.ctx
        aspect = width / height       # aspect ratio
        corner_radius = height / 5.0 # and corner curvature radius

        radius = corner_radius / aspect
        degrees = pi / 180.0

        ctx.new_sub_path()
        ctx.arc(x + width - radius, y + radius, radius, -90 * degrees, 0 * degrees)
        ctx.arc(x + width - radius, y + height - radius, radius, 0 * degrees, 90 * degrees)
        ctx.arc(x + radius, y + height - radius, radius, 90 * degrees, 180 * degrees)
        ctx.arc(x + radius, y + radius, radius, 180 * degrees, 270 * degrees)

        x += thickness
        y += thickness
        width -= 2*thickness
        height -= 2*thickness
        aspect = width / float(height) # aspect ratio
        corner_radius = height / 5.0 # and corner curvature radius

        radius = corner_radius / aspect
        degrees = pi / 180.0

        ctx.new_sub_path()
        ctx.arc(x + width - radius, y + radius, radius, -90 * degrees, 0 * degrees)
        ctx.arc(x + width - radius, y + height - radius, radius, 0 * degrees, 90 * degrees)
        ctx.arc(x + radius, y + height - radius, radius, 90 * degrees, 180 * degrees)
        ctx.arc(x + radius, y + radius, radius, 180 * degrees, 270 * degrees)

        ctx.close_path()


    def draw3DFrame(self, x, y, width, height, outline, fill, thickness):
        ctx = self.ctx
        ctx.new_path()

        # first 2 rectangles (ramp going up of width thickness)
        self.roundedRectangleEdge(x, y, width, height, thickness)
        size = max(width, height)/2
        cx = width/2
        cy = height/2
        pat = cairo.LinearGradient(cx-size, cy-size, cx+size, cy+size)
        pat.add_color_stop_rgba(0, *outline) 
        pat.add_color_stop_rgba(1, 0.2, 0.2, 0.2, 1)
        ctx.set_source(pat)
        ctx.set_fill_rule(cairo.FILL_RULE_EVEN_ODD)
        ctx.fill()
        #ctx.set_source_rgb(0,0,0)
        #ctx.stroke()
        thick2 = 2*thickness
        thick3 = 3*thickness
        thick4 = 4*thickness
        thick6 = 6*thickness

        # second set of 2 rectangles flat color (top of ridge) of witdh thickness
        self.roundedRectangleEdge(x+thickness, y+thickness, width-thick2, height-thick2, thickness)
        ctx.set_source_rgb( outline[0]-0.01, outline[1]+0.01, outline[2] )
        ctx.fill()

        # third set of 2 rectangles flat color (top of ridge)
        self.roundedRectangleEdge(x+thick2, y+thick2, width-thick4, height-thick4, thickness)
        pat = cairo.LinearGradient(cx-size, cy-size, cx+size, cy+size)
        pat.add_color_stop_rgba(1, *outline)
        pat.add_color_stop_rgba(0,  0.2, 0.2, 0.2, 1)
        ctx.set_source(pat)
        ctx.fill()

        # add fill
        self.roundedRectangle(x+thick3, y+thick3, width-thick6, height-thick6)
        #ctx.set_source_rgba(0,0,0,1)
        #ctx.stroke()
        ctx.set_source_rgba(*fill)
        ctx.fill()

    def getPilImage(self):
        buf = self.surface.get_data()
        width = self.width+2*self.border
        height = self.height+2*self.border
        return Image.frombuffer('RGBA', (width, height), buf, 'raw',
                                'BGRA', 0, 1)


    def addDropShadow(self):
        image = self.getPilImage()
        return dropShadow(image)


    def makeCircleNodeImage(self, width, height, outline, fill, macro=False):
        self.width = int(width)
        self.height = int(height)
        # upper left corner of the box
        #self.ul = ulx, uly = self.size/2-width/2, self.size/2-height/2
        self.ul = ulx, uly = self.border, self.border
        self.surface = cairo.ImageSurface(cairo.FORMAT_ARGB32, self.width+2*self.border,
                                          self.height+2*self.border)
        self.ctx = cairo.Context (self.surface)

        self.ctx.save()
        self.ctx.translate(self.border+self.width/2., self.border+self.height/2)
        self.ctx.scale (self.width, self.height)
        #pat = cairo.RadialGradient (0.35, 0.3, 0.1,
        #                            0.5,  0.5, .8)
        #self.ctx.set_source (pat)
        #pat.add_color_stop_rgba (0, 1, 1, 1, 1)
        #pat.add_color_stop_rgba (1, 0, 0, 0, 1)
        self.ctx.arc (0., 0., (width-10)/(2*width), 0, 2*pi)
        self.ctx.set_line_width(.03)
        self.ctx.set_source_rgba(*outline)
        self.ctx.stroke()
        self.ctx.arc (0., 0., (width-15)/(2*width), 0, 2*pi)
        self.ctx.set_source_rgba(*fill)
        self.ctx.fill()
        self.ctx.restore()
        
        #self.drawSquareFlatBox(width, height, outline, fill, macro)
    
    def makeNodeImage(self, width, height, outline, fill, macro=False):

        self.width = int(width)
        self.height = int(height)
        #self.size = int(sqrt(self.width*self.width + self.height*self.height))
        # upper left corner of the box
        #self.ul = ulx, uly = self.size/2-width/2, self.size/2-height/2
        self.ul = ulx, uly = self.border, self.border
        self.surface = cairo.ImageSurface(cairo.FORMAT_ARGB32, self.width+2*self.border,
                                          self.height+2*self.border)
        self.ctx = cairo.Context (self.surface)

        #self.drawSquareFlatBox(width, height, outline, fill, macro)
        if macro:
            self.draw3DFrame(ulx, uly, self.width, self.height, outline, fill, 2)
        else:
            self.draw3DFrame(ulx, uly, self.width, self.height, outline, fill, 1.5)
            
        
    def drawIcon(self, filename):
        iconImage = cairo.ImageSurface.create_from_png(filename)
        imwidth = iconImage.get_width()
        imheight = iconImage.get_height()
        ulx, uly = self.ul[0]+5, self.ul[1]+5 # define upper left corner
        self.ctx.set_source_surface(iconImage, ulx, uly)
        self.ctx.rectangle(ulx, uly, ulx+imwidth, uly+imheight)
        self.ctx.fill()


    #def drawPort(self, ptype, x, y, size, vector, line, fill, outline, label, edge):
    def drawPort(self, ptype, x, y, descr):
        vector = descr.get('vector')
        # flip y as cairo origin is upper left corner
        vector = [vector[0], -vector[1]]
        size = descr.get('size', 10)
        fill = descr.get('fill', (1,1,1,1))
        line = descr.get('line', (0,0,0,1))
        outline = descr.get('outline', (0,0,0,1))
        label = descr.get('label', None)
        edge = descr['edge']
        
        # draw a Port
        # set color
        halfSize = size/2
        self.ctx.set_source_rgba(*fill)
        self.ctx.rectangle( x-halfSize, y-halfSize, size, size)
        self.ctx.fill()
        
        self.ctx.set_source_rgba(*outline)
        self.ctx.rectangle(  x-halfSize, y-halfSize, size, size)
        self.ctx.set_line_width(2)
        self.ctx.stroke()

        # update bbox
        if x-halfSize<self.bbox[0]: self.bbox[0] = x-halfSize
        if y-halfSize<self.bbox[1]: self.bbox[1] = y-halfSize
        if x+halfSize>self.bbox[2]: self.bbox[2] = x+halfSize
        if y+halfSize>self.bbox[3]: self.bbox[3] = y+halfSize

        # draw the arrow head
        if ptype=='in':
            vx, vy = -vector[0]*halfSize, -vector[1]*halfSize
        else:
            vx, vy = vector[0]*halfSize, vector[1]*halfSize
        px, py = -vy*.5, vx*.5 # orthogonal vector
        self.ctx.set_source_rgba(*line)
        self.ctx.set_line_width(4)
        self.ctx.set_line_join(cairo.LINE_JOIN_BEVEL)
        self.ctx.move_to(x-vx*.5-px, y-vy*.5-py)
        self.ctx.line_to(x+vx*.8, y+vy*.8) #arrow tip
        self.ctx.line_to(x-vx*.5+px, y-vy*.5+py)
        self.ctx.stroke()

        # draw the arrow line
        self.ctx.set_line_width(1)
        self.ctx.move_to(x+vx, y+vy)
        self.ctx.line_to(x-vx, y-vy)
        self.ctx.stroke()

        # draw port name
        if label:
            self.ctx.set_source_rgb(0, 0, 0)
            self.ctx.select_font_face("Sans", cairo.FONT_SLANT_NORMAL,
                                      cairo.FONT_WEIGHT_NORMAL)
            self.ctx.set_font_size(10.)
            x_bearing, y_bearing, width, height = self.ctx.text_extents(label)[:4]
            if edge=='top':
                self.ctx.move_to( x - width/2, y + halfSize + 4 + height)
            elif edge=='bottom':
                self.ctx.move_to( x - width/2, y - halfSize - 4 )
            elif edge=='left':
                self.ctx.move_to( x + halfSize + 4, y + height/2.)
            elif edge=='right':
                self.ctx.move_to( x - width - x_bearing - 10, y + height/2.)
            self.ctx.show_text(label)


    def drawLabel(self, label, padding):
        self.ctx.set_source_rgb(0, 0, 0)
        self.ctx.select_font_face("Sans", cairo.FONT_SLANT_NORMAL, cairo.FONT_WEIGHT_BOLD)
        self.ctx.set_font_size(18.)
        x_bearing, y_bearing, width, height = self.ctx.text_extents(label)[:4]
        cx = self.border + padding['left'] + (self.width-padding['left']-padding['right'])/2
        cy = self.border + padding['top'] + (self.height-padding['top']-padding['bottom'])/2
        self.ctx.move_to(cx - width/2 - x_bearing, cy-height/2 - y_bearing)
        self.ctx.show_text(label)


    def getLabelSize(self, label, font='Sans', size=18,
                     slant=cairo.FONT_SLANT_NORMAL,
                     weight=cairo.FONT_WEIGHT_BOLD):
        surface = cairo.ImageSurface(cairo.FORMAT_ARGB32, 800, 800)
        ctx = cairo.Context(surface)
        ctx.select_font_face(font, slant, weight)
        ctx.set_font_size(size)
        x_bearing, y_bearing, width, height = ctx.text_extents(label)[:4]
        return x_bearing, y_bearing, width, height


#ctx.scale (WIDTH, HEIGHT) # Normalizing the canvas
## pat = cairo.LinearGradient (0.0, 0.0, 0.0, 1.0)
## pat.add_color_stop_rgba (1, 0.7, 0, 0, 0.5) # First stop, 50% opacity
## pat.add_color_stop_rgba (0, 0.9, 0.7, 0.2, 1) # Last stop, 100% opacity

## ctx.rectangle (0, 0, 1, 1) # Rectangle(x0, y0, x1, y1)
## ctx.set_source (pat)
## ctx.fill ()

## ctx.translate (0.1, 0.1) # Changing the current transformation matrix

## ctx.move_to (0, 0)
## ctx.arc (0.2, 0.1, 0.1, -math.pi/2, 0) # Arc(cx, cy, radius, start_angle, stop_angle)
## ctx.line_to (0.5, 0.1) # Line to (x,y)
## ctx.curve_to (0.5, 0.2, 0.5, 0.4, 0.2, 0.8) # Curve(x1, y1, x2, y2, x3, y3)
## ctx.close_path ()

## ctx.set_source_rgb (0.3, 0.2, 0.5) # Solid color
## ctx.set_line_width (0.02)
## ctx.stroke ()
## fill = (0.82, 0.88, 0.95, 0.5)
## line = (0.28, 0.45, 0.6, 1.)

## from math import pi
## renderer = CairoNodeRenderer()
## renderer.makeNodeImage(200, 100, line, fill)
## ulx, uly = renderer.ul
## renderer.drawPort(ulx+60, uly, 'input', line, (1,1,1,1))
## renderer.drawPort(ulx+120, uly, 'output', line, (1,1,1,1))
## renderer.drawPort(ulx+60, uly+100, 'output', line, (1,1,1,1))
## renderer.drawPort(ulx+120, uly+100, 'input', line, (1,1,1,1))
## renderer.drawLabel('Node 1')
## renderer.surface.write_to_png ("node1.png") # Output to PNG