1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
|
#########################################################################
#
# Date: Nov. 2001 Author: Michel Sanner
#
# Copyright: Michel Sanner and TSRI
#
#########################################################################
import threading, traceback, time
class ExecutionThread(threading.Thread, threading._Verbose):
""" class used to schedule a list of nodes in a separate thread.
"""
def __init__(self, net, nodes):
threading.Thread.__init__(self, name='scheduler')
threading._Verbose.__init__(self)
self.net = net
self.nodes = nodes
def run(self):
"""run all nodes in the order they appear in the list"""
net = self.net
net.execStatusLock.acquire()
net.execStatus = 'running'
net.execStatusLock.release()
net.RunLock.acquire()
t1 = time.time()
net.runNodes(self.nodes)
t2 = time.time()
net.execStatusLock.acquire()
net.execStatus = 'waiting'
net.execStatusLock.release()
#print 'ran in:', t2-t1
net.RunLock.release()
class AfterExecution(threading.Thread, threading._Verbose):
""" class used to wait for the end of an execution and call a fucntion
"""
def __init__(self, net, func=None):
threading.Thread.__init__(self, name='scheduler')
self.net = net
if func is not None:
assert callable(func)
self.func = func
def run(self):
"""run all nodes in the order they appear in the list"""
net = self.net
# get the lock
net.RunLock.acquire()
# release lock and go to sleep until notified
net.RunLockCond.wait()
# call the function
self.func(net)
net.RunLock.release()
## class MTScheduler(threading.Thread, threading._Verbose):
## """ class used to schedule the multi-threaded execution of the nodes
## in the subtrees specified by a set of root nodes"""
## # FIXME we might want to add a limit number of threads to be started
## # simultaneousley
## def __init__(self, roots):
## threading.Thread.__init__(self, name='scheduler')
## threading._Verbose.__init__(self)
## self.mtstatelock = threading.RLock()
## self.waitLock = threading.RLock()
## self.waitCond = threading.Condition(self.waitLock)
## self.threadObjects = []
## ## USED TO FLASH NETWORK ONCE ONLY
## ## self.allNodes = [] # list of nodes to be run
## self.roots = roots
## self.done = 0 # will be set to 1 after all nodes have run
## for node in roots:
## node.mtstate = 0
## self.iterateNodes = [] # list to store iterate nodes in substrees
## # with roots self.roots
## def tagNodes(self, node, iterateSubTree):
## """tag all nodes in subtree. mtstate will correspond to the number
## of times a given node was seen in the set of all sub-trees,
## iterateSubTree is used to tag all nodes below an iterate node"""
## ## USED TO FLASH NETWORK ONCE ONLY
## ## if node.mtstate==0:
## ## self.allNodes.append(node)
## ## # if we flash the network turn node red
## ## if node.editor.flashNetworkWhenRun:
## ## lock = node.editor.RunNodeLock
## ## lock.acquire()
## ## node._tmp_prevCol = node.setColor('red')
## ## lock.release()
## node.mtstate = node.mtstate + 1
## # if the node has been seen before (from another root) do not
## # overwrite the fact that it is a child of an iterate node (if it is)
## if hasattr(node, '_tmp_childOfIterate'):
## if node._tmp_childOfIterate < iterateSubTree:
## node._tmp_childOfIterate = iterateSubTree
## else:
## node._tmp_childOfIterate = iterateSubTree
## #print 'TAG', node.name, node._tmp_childOfIterate
## # has to be imported here because of cross imports with
## # items and standardNodes
## from StandardNodes import Iterate
## if isinstance(node, Iterate):
## self.iterateNodes.append(node)
## node._tmp_isIterateNode = 1
## iterateSubTree = 1
## #print 'TAG', node.name, node.mtstate
## if hasattr(node, 'temp_uniqueFloodIndex'):
## if node.temp_uniqueFloodIndex == self.uniqueFloodIndex:
## return
## node.temp_uniqueFloodIndex = self.uniqueFloodIndex
## for child in node.children:
## self.tagNodes(child, iterateSubTree)
## def startChildren(self, node):
## """recursively start threaded execution of all non-root nodes"""
## # FIXME: we should builtin a limit number of threads to be started
## # at the same time
## # children of iterate node need not be scheduled
## if hasattr(node, '_tmp_isIterateNode'):
## return
## for child in node.children:
## # if node not yet associated with a thread object
## if child._tmp_childOfIterate==1:
## #print 'NOT starting node for _tmp_childOfIterate:', child.name
## continue
## if child.mtstate > 0:
## #print 'starting node:', child.name
## child.thread = NodeThread(child, self, root=0)
## self.threadObjects.append(child.thread)
## # force mtstate to -1 to prevent creating more thread object
## # threadobject's run method checks mtstate==-1 to decide if
## # it has to wait for a parent's completion
## child.mtstate = -1
## #else:
## #print 'NOT starting node for mtstate:', child.name
## self.startChildren(child)
## def deleteTmp(self, node):
## del node.temp_uniqueFloodIndex
## if hasattr(node, '_tmp_childOfIterate'):
## del node._tmp_childOfIterate
## for child in node.children:
## self.deleteTmp(child)
## def run(self):
## """ schedule MT execution of all nodes in trees for a given list
## of root nodes"""
## if len(self.roots)==0:
## return
## if self.roots[0].editor.networkRunning==0:
## return
## self.roots[0].network.RunNetLock.acquire()
## self.mtstatelock.acquire()
## # list of ThreadObjects for all children (i.e. non root) nodes
## # node.mtstate is used to add each child node only once to the list
## # It is also used in the ThreadNode object.run() method
## # to decide if a child node has to wait for a given parent
## self.threadObjects = []
## # used to prevent endless loop in tagging of nodes involved in
## # this run
## self.uniqueFloodIndex = 0
## # first tag all nodes involved in this run using mtstate
## for root in self.roots:
## self.tagNodes(root, 0)
## self.uniqueFloodIndex = self.uniqueFloodIndex + 1
## if root.mtstate > 1: # this root is also a child of another root
## #print 'REMOVING root', root.name
## self.roots.remove(root) # we remove from the list of roots
## else:
## # force mtstate to -1 so all children will wait once started
## root.mtstate = -1
## # walk the subtrees and add a ThreadNode object to the list for
## # each child node and force mtstate to -1 on all of them
## for root in self.roots:
## self.startChildren(root)
## for node in self.iterateNodes:
## del node._tmp_isIterateNode
## for node in self.roots:
## self.deleteTmp(node)
## # At this point, all nodes involved have mtstate == -1
## # and self.threadObjects contains a NodeThread for each child node
## # now start all children nodes
## # they will sit waiting to grab the mtstatelock and then wait for
## # their parent's condition
## for to in self.threadObjects:
## to.start()
## self.mtstatelock.release()
## # now execute all root nodes and trigger all the executions
## for root in self.roots:
## #print 'starting node:', root.name
## # root=1 means this node will not wait for parents to start
## # running
## root.thread = NodeThread(root, self, root=1)
## root.thread.start()
## #self.mtstatelock.release()
## # has to be imported here because of cross imports with
## # items and standardNodes
## from StandardNodes import Iterate
## # lock run lock until this run is completed
## self.waitLock.acquire()
## while 1:
## self.done = 1
## # check if there is a thread started by an MTScheduler object
## # (they can be recognized because their name starts with
## # the '_&&_mtScheduler_&&_thread_' string).
## # if we find a thread with such a name which does not
## # correspond to an iterate node we have to wait.
## # else, all children started have run and we can release the
## # lock that was set for this run and give another MTscheduler
## # (for instance started by an iterate node) to grab it and start
## # running.
## #
## for thread in threading.enumerate():
## # if this thread was started by an MTscheduler
## if thread.getName()[:26]=='_&&_mtScheduler_&&_thread_':
## # if it is not an iterate node and it is not
## # a child of an iterate node that is scheduled
## # we have to wait.
## if not isinstance(thread.node, Iterate):
## self.done = 0
## break
## if self.done==1:
## net = self.roots[0].network
## net.release()
## net.iterateLock.acquire()
## net.iterateCond.notifyAll() # wakeup all iterate nodes
## net.iterateLock.release()
## break
## else:
## # self.waitCond is notified after completed of each thread
## # corresponding to a node.
## # We check every second but this wakes up every time a node
## # is done running anyways. We still need the timeout of
## # 1 second in case we miss a notifocation or an iterate node
## # is still an active thread but not done running. (not 100%
## # sure we need the timeout)
## self.waitCond.wait(1)
## ## USED TO FLASH NETWORK ONCE ONLY
## # if we flash the network only once go back to previous color
## ## if self.roots[0].editor.flashNetworkWhenRun:
## ## for node in self.allNodes:
## ## lock = node.editor.RunNodeLock
## ## lock.acquire()
## ## node._tmp_prevCol = node.setColor(node._tmp_prevCol)
## ## del node._tmp_prevCol
## ## lock.release()
## self.waitLock.release()
## class NodeThread(threading.Thread):
## def __init__(self, node, scheduler, root=0):
## threading.Thread.__init__(self, name='_&&_mtScheduler_&&_thread_'+node.name)#, verbose=1)
## self.node = node
## self.scheduler = scheduler
## self.root = root
## def run(self):
## node = self.node
## #self._note('running %s', node.name)
## # acquire global lock (only one node can run at any time)
## lock = node.network.RunNodeLock
## lock.acquire()
## #print 'start running', node.name
## # has to be imported here because of cross imports with
## # items and standardNodes
## from StandardNodes import Iterate
## try:
## # make sure all parents are done
## if self.root==0:
## for parentNode in node.parents:
## if isinstance(parentNode, Iterate):
## continue
## self.scheduler.mtstatelock.acquire()
## if parentNode.mtstate == -1:
## self.scheduler.mtstatelock.release()
## parentNode.condition.wait()
## #print node.name, 'wake up sent by', parentNode.name
## else:
## self.scheduler.mtstatelock.release()
## if node.editor.flashNodesWhenRun:
## col = node.setColor('red')
## #node.editor.update_idletasks()
## # once all the parents are done we can run this node
## #print 'running', node.name
## status = node.computeFunction()
## if node.editor.flashNodesWhenRun:
## if col=='#557700': # after successfull run of failed node
## col = node.colorBeforeFail
## node.setColor(col)
## except:
## print
## print "***********************************************************"
## print "*** ERROR while executing node: ", node.name
## print "***********************************************************"
## traceback.print_exc()
## if node.editor.flashNodesWhenRun:
## if col != '#557700':
## node.colorBeforeFail = col
## node.setColor('#557700')
## self.scheduler.mtstatelock.acquire()
## node.mtstate = 0 # done
## #print 'mtstate', node.name, node.mtstate
## self.scheduler.mtstatelock.release()
## # once this node has run we want to tell all threads of
## # children nodes
## #print 'notify from', node.name
## node.condition.notifyAll()
## #print 'Thread: acquireing waitLock by', node.name
## self.scheduler.waitLock.acquire()
## self.scheduler.waitCond.notify()
## #print 'Thread: releasinging waitLock by', node.name
## self.scheduler.waitLock.release()
## # finally release the lock
## #print 'release global lock', node.name
## del node.thread
## lock.release()
## class Queue(threading._Verbose):
## def __init__(self, limit):
## threading._Verbose.__init__(self)
## self.mon = threading.RLock()
## self.rc = threading.Condition(self.mon)
## self.wc = threading.Condition(self.mon)
## self.limit = limit
## self.queue = [] # list of nodes in trees except for root nodes
## self.roots = [] # list of nodes at root of trees
## def printQueue(self):
## self.mon.acquire()
## self._note('queue :************************')
## for entry in self.queue:
## self._note("%s", entry.name)
## self.mon.release()
## def put(self, item):
## self.mon.acquire()
## # we only add nodes to the queue if they are not queued or scheduled
## # if a node is running, it needs to be added tot he queue in order to
## # run again with the new input
## if item.mtstate is not 0:
## print '-------- already in queue or schedule', item.name
## self.mon.release()
## return
## while len(self.queue) >= self.limit:
## #self._note("put(%s): queue full", item)
## self.wc.wait()
## print 'queued ',item.name
## #import traceback
## #print traceback.print_stack()
## self.queue.append(item)
## item.mtstate = 3 # inQueue
## #self._note("put(%s): appended, length now %d",
## # item, len(self.queue))
## self.rc.notify()
## self.mon.release()
## def get(self):
## self.mon.acquire()
## while not self.queue:
## #self._note("get(): queue empty")
## print '************************ queue empty'
## self.rc.wait()
## item = self.queue[0]
## print 'scheduled ',item.name
## item.mtstate = 2 # scheduled
## del self.queue[0]
## #self._note("get(): got %s, %d left", item, len(self.queue))
## self.wc.notify()
## self.mon.release()
## return item
## # objects reading the queue
## class QueueHandler(threading.Thread):
## def __init__(self, queue, verbose=None):
## threading.Thread.__init__(self, name="handler", verbose=verbose)
## self.queue = queue
## self.finish = 1
## def stop(self):
## self._Thread__started = 0
## self.finish = 1
## def run(self):
## self.finish = 0
## while not self.finish:
## node = self.queue.get()
## if node.frozen:
## continue
## #if __debug__:
## # self._note('running %s', node.name)
## node.thread = NodeThread(node, self.queue)
## node.thread.start()
#def _test():
# import time
# _sleep = time.sleep
#
# NP = 3
# QL = 4
# NI = 5
#
# Q = Queue(QL)
# P = []
# C = ConsumerThread(Q, NI*NP)
# C.start()
# for i in range(NP):
# t = ProducerThread(Q, NI)
# t.setName("Producer-%d" % (i+1))
# P.append(t)
# t.start()
# _sleep(1.)
# #for t in P:
# # t.join()
# #C.join()
#
#if __name__ == '__main__':
# _test()
#
|