File: drawShape.py

package info (click to toggle)
mgltools-viewerframework 1.5.7-3
  • links: PTS, VCS
  • area: non-free
  • in suites: buster
  • size: 1,580 kB
  • sloc: python: 13,681; sh: 78; makefile: 10
file content (209 lines) | stat: -rw-r--r-- 7,530 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
#############################################################################
#
# Author: Sophie Coon, Michel F. SANNER, Kevin CHAN
#
# Copyright: M. Sanner TSRI 2000
#
#############################################################################

#
# $Header: /opt/cvs/python/packages/share1.5/ViewerFramework/drawShape.py,v 1.2.10.1 2016/02/12 00:29:31 annao Exp $
#
# $Id: drawShape.py,v 1.2.10.1 2016/02/12 00:29:31 annao Exp $
#

import Tkinter
import numpy
from DejaVu.IndexedPolygons import IndexedPolygons

class DrawShape:
    """ gui to allow user to draw an arbitrary shape and get points and normals
    for the shape. """

    def __init__(self, master, grid=10):
    
	self.root = Tkinter.Toplevel(master)

	# add a title
	self.title = Tkinter.Label(self.root,text='Draw a Shape')
        description = 'click left mouse button to set a point\n click right mouse button to stop drawing\n draw points clockwise'
        self.details = Tkinter.Label(self.root, text=description)
	self.title.pack(side='top', anchor='n')
        self.details.pack(side='bottom')

	self.f = Tkinter.Frame(self.root)
	self.c = Tkinter.Canvas(self.f, borderwidth = 3, relief='ridge')
	self.c.grid(column=4, rowspan=5)

	Tkinter.Widget.bind(self.c, "<Button-1>", self.mouseDown)
	Tkinter.Widget.bind(self.c, "<Button-3>", self.endShape)
	Tkinter.Widget.bind(self.c, "<Motion>", self.mouseMotion)
        self.hasFirstPoint = 0
        
	self.but=Tkinter.Button(self.f, text='clear',command=self.clear)
	self.but.grid(row=4, column=2)
	self.dup = Tkinter.IntVar()
        smooth = Tkinter.Radiobutton(self.f, text = 'smooth edges',
                                     var = self.dup, value = 0)
	sharp = Tkinter.Radiobutton(self.f, text = 'sharp edges',
                                    var = self.dup, value = 1)
	smooth.grid(row=0, columnspan=3)
        sharp.grid(row=1, columnspan=3)
        self.cap1 = Tkinter.IntVar()
        self.cap2 = Tkinter.IntVar()
        cap1 = Tkinter.Checkbutton(self.f, text = 'front cap', var = self.cap1)
        cap2 = Tkinter.Checkbutton(self.f, text = 'end cap', var = self.cap2)
        cap1.grid(row=2, columnspan=3)
        cap2.grid(row=3, columnspan=3)
        
        # list of points in contour
        self.shape = []
        self.end = 0
        
	# this is a "tagOrId" for the line we draw on the canvas
	self.rubberbandLine = None

	# this is the size of the gridding squares
	self.griddingSize = grid

        # how much 1 grid space is in real world
        self.gridToWorld = 0.1

	# build the OK Cancel buttons
	ok = Tkinter.Button(self.f, text='OK', command=self.OK_cb)
	cancel = Tkinter.Button(self.f, text='Cancel', command=self.Cancel_cb)
	cancel.grid(row=4, column=1)
	ok.grid(row=4, column=0)
	self.f.pack(side='bottom', anchor='s')

    def mouseDown(self, event):
	# canvas x and y take the screen coords from the event and translate
	# them into the coordinate system of the canvas object
	x = self.c.canvasx(event.x, self.griddingSize)
	y = self.c.canvasy(event.y, self.griddingSize)

        if len(self.shape)>0: # after first point
	    self.newline=self.c.create_line(self.shape[-1][0],
                                            self.shape[-1][1],
                                            x, y, tags='segment')
	self.shape.append((x,y))

        if self.rubberbandLine:
            self.c.delete(self.rubberbandLine)
        self.rubberbandLine = self.c.create_line(x, y, x, y, tags='rubber')

    def endShape(self, event):
        self.end = 1
        if self.rubberbandLine:
            self.c.delete(self.rubberbandLine)

    def mouseMotion(self, event):
	# canvas x and y take the screen coords from the event and translate
	# them into the coordinate system of the canvas object

        if len(self.shape)==0: return
        if self.end: return

	x = self.c.canvasx(event.x, self.griddingSize)
	y = self.c.canvasy(event.y, self.griddingSize)

	if (self.shape[-1][0] != event.x)  and (self.shape[-1][1] != event.y): 
	    self.c.delete(self.rubberbandLine)
	    self.rubberbandLine = self.c.create_line(
		self.shape[-1][0], self.shape[-1][1], x, y)
	    # this flushes the output, making sure that 
	    # the rectangle makes it to the screen 
	    # before the next event is handled
	    self.f.update_idletasks()

    def End(self):
        import math
       
        # center the points around the origin
        sca = (1.0/self.griddingSize)*self.gridToWorld
	points = numpy.array(self.shape, 'f')* sca
	xsum, ysum = 0, 0
	if points:
            repeat = 0
            comp = points[-1]-points[0]
            if abs(comp[0])<.01 and abs(comp[1])<.01: repeat = -1
	    for i in range(len(points)+repeat):
		xsum = xsum + points[i][0]
		ysum = ysum + points[i][1]
	    xcenter = xsum/(len(points)+repeat)
	    ycenter = ysum/(len(points)+repeat)
	    origin = (xcenter, ycenter)
	    points = points - origin
	    points[:,1:] = points[:,1:]*-1

            # 3D
            o = numpy.ones((len(points), 1))
            points = numpy.concatenate((points, o), 1)

            # calculate normals to each side
            normals = numpy.zeros((len(points)-1, 3), 'f')
            for i in range(len(points)-1):
                diff = points[i+1] - points[i]
                if diff[1]==0:
                    normals[i][0] = 0.0
                    normals[i][1] = diff[0]/abs(diff[0])
                else:
                    slope = -diff[0]/diff[1]
                    size = -math.sqrt(1+slope**2)*(diff[1]/abs(diff[1]))
                    normals[i][0] = 1.0/size
                    normals[i][1] = slope/size
            
            # duplicate vertices
	    if self.dup.get():
		pts = numpy.concatenate((points, points), 1)
		self.points = numpy.reshape(pts, (2*len(points), 3))
                norms1 = numpy.concatenate((numpy.reshape(normals[-1],
                                                             (1,3)),
                                             normals))
                norms2 = numpy.concatenate((normals,
                                              numpy.reshape(normals[0],
                                                              (1,3))))
                norms = numpy.concatenate((norms1, norms2), 1)
                self.normals = numpy.reshape(norms, (2*len(points), 3))
            # single vertices: average normals
	    else:
                self.points = points
                self.normals = numpy.zeros((len(points), 3)).astype('f')
                for i in range(len(points)-1):
                    n = (normals[i-1]+normals[i])/2
                    self.normals[i] = n.astype('f')
                self.normals[len(points)-1] = self.normals[0]
	    print self.points
      	else: self.points, self.normals = [], []
	#now use points to make a polyline or polygon or whatever

    def OK_cb(self, event=None):
	"""call back for OK button"""
        if not hasattr(self, 'points'): self.End()
	if self.points: self.root.quit()

    def Cancel_cb(self):
	"""call back for Cancel button"""
	self.points = []
        self.normals = []
	self.root.quit()

    def clear(self):
	self.shape=[]
        self.end = 0
	self.pointindex=0
	self.c.delete(self.c.gettags('segment'))

    def go(self):
	"""start chooser in modal mode"""
	self.root.grab_set()
	self.root.mainloop()
	self.root.destroy()
	return self.points, self.normals, self.dup.get(), self.cap1.get(),\
               self.cap2.get()

if __name__ =='__main__':
    import pdb
    root=Tkinter.Tk()
    myDraw=DrawShape(root)
    val = myDraw.go()