1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
|
// Mgmt
// Copyright (C) 2013-2024+ James Shubin and the project contributors
// Written by James Shubin <james@shubin.ca> and the project contributors
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.
//
// Additional permission under GNU GPL version 3 section 7
//
// If you modify this program, or any covered work, by linking or combining it
// with embedded mcl code and modules (and that the embedded mcl code and
// modules which link with this program, contain a copy of their source code in
// the authoritative form) containing parts covered by the terms of any other
// license, the licensors of this program grant you additional permission to
// convey the resulting work. Furthermore, the licensors of this program grant
// the original author, James Shubin, additional permission to update this
// additional permission if he deems it necessary to achieve the goals of this
// additional permission.
// Package pgraph represents the internal "pointer graph" that we use.
package pgraph
import (
"errors"
"fmt"
"sort"
"strings"
"github.com/purpleidea/mgmt/util/errwrap"
)
// ErrNotAcyclic specifies that a particular graph was not found to be a dag.
var ErrNotAcyclic = errors.New("not a dag")
// Graph is the graph structure in this library. The graph abstract data type
// (ADT) is defined as follows:
// * The directed graph arrows point from left to right. ( -> )
// * The arrows point away from their dependencies. (eg: arrows mean "before")
// * IOW, you might see package -> file -> service. (where package runs first)
// * This is also the direction that the notify should happen in...
type Graph struct {
Name string
adjacency map[Vertex]map[Vertex]Edge // Vertex -> Vertex (edge)
kv map[string]interface{} // some values associated with the graph
}
// Vertex is the primary vertex struct in this library. It can be anything that
// implements Stringer. The string output must be stable and unique in a graph.
type Vertex interface {
fmt.Stringer // String() string
}
// Edge is the primary edge struct in this library. It can be anything that
// implements Stringer. The string output must be stable and unique in a graph.
type Edge interface {
fmt.Stringer // String() string
}
// Init initializes the graph which populates all the internal structures.
func (g *Graph) Init() error {
if g.Name == "" { // FIXME: is this really a good requirement?
return fmt.Errorf("can't initialize graph with empty name")
}
if g.adjacency == nil {
g.adjacency = make(map[Vertex]map[Vertex]Edge)
}
//g.kv = make(map[string]interface{}) // not required
return nil
}
// NewGraph builds a new graph.
func NewGraph(name string) (*Graph, error) {
g := &Graph{
Name: name,
}
if err := g.Init(); err != nil {
return nil, err
}
return g, nil
}
// Value returns a value stored alongside the graph in a particular key.
func (g *Graph) Value(key string) (interface{}, bool) {
val, exists := g.kv[key]
return val, exists
}
// SetValue sets a value to be stored alongside the graph in a particular key.
func (g *Graph) SetValue(key string, val interface{}) {
if g.kv == nil { // initialize on first use
g.kv = make(map[string]interface{})
}
g.kv[key] = val
}
// Copy makes a copy of the graph struct. This doesn't copy the individual
// vertices or edges, those pointers remain untouched. This lets you modify the
// structure of the graph without changing the original. If you also want to
// copy the nodes, please use CopyWithFn instead.
func (g *Graph) Copy() *Graph {
if g == nil { // allow nil graphs through
return g
}
newGraph := &Graph{
Name: g.Name,
adjacency: make(map[Vertex]map[Vertex]Edge, len(g.adjacency)),
kv: g.kv,
}
for v1, m := range g.adjacency {
newGraph.adjacency[v1] = make(map[Vertex]Edge)
for v2, e := range m {
newGraph.adjacency[v1][v2] = e // copy
}
}
return newGraph
}
// CopyWithFn makes a copy of the graph struct but lets you provide a function
// to copy the vertices.
// TODO: add tests
func (g *Graph) CopyWithFn(vertexCpFn func(Vertex) (Vertex, error)) (*Graph, error) {
if g == nil { // allow nil graphs through
return g, nil
}
if l := len(g.adjacency); vertexCpFn == nil && l > 0 {
return nil, fmt.Errorf("graph has %d vertices, but vertexCpFn is nil", l)
}
newGraph := &Graph{
Name: g.Name,
adjacency: make(map[Vertex]map[Vertex]Edge, len(g.adjacency)),
kv: g.kv,
}
vm := make(map[Vertex]Vertex) // copy mapping from old ptr to new ptr...
for v1, m := range g.adjacency {
// We copy each vertex, but then we need to do a lookup so that
// when (if) we see that old pointer again, we use the new one.
v, err := vertexCpFn(v1) // copy
if err != nil {
return nil, err
}
vm[v1] = v // mapping
newGraph.adjacency[v] = make(map[Vertex]Edge)
for v2, e := range m {
vx, exists := vm[v2] // copied equivalent of v2
if !exists {
// programming error or corrupt adjacency maps!
// anything in the second map, should be in the
// first one, or else it was added/modified oob
return nil, fmt.Errorf("corrupt datastructure")
}
// TODO: add edgeCpFn if it's deemed useful somehow...
//edge, err := edgeCpFn(e) // copy edge
//if err != nil {
// return nil, err
//}
//newGraph.adjacency[v][vx] = edge
newGraph.adjacency[v][vx] = e // store the edge
}
}
return newGraph, nil
}
// VertexSwap swaps vertices in a graph. It returns a new graph with the same
// structure but with replacements done according to the translation map passed
// in. If a vertex is not found in the graph, then it is not substituted.
// TODO: add tests
func (g *Graph) VertexSwap(vs map[Vertex]Vertex) (*Graph, error) {
vertexCpFn := func(v Vertex) (Vertex, error) {
if vs == nil { // pass through
return v, nil
}
vx, exists := vs[v]
if !exists {
return v, nil // pass through
}
return vx, nil // swap!
}
// We can implement the logic we want on top of CopyWithFn easily!
return g.CopyWithFn(vertexCpFn)
}
// GetName returns the name of the graph.
func (g *Graph) GetName() string {
return g.Name
}
// SetName sets the name of the graph.
func (g *Graph) SetName(name string) {
g.Name = name
}
// AddVertex uses variadic input to add all listed vertices to the graph.
func (g *Graph) AddVertex(xv ...Vertex) {
if g.adjacency == nil { // initialize on first use
g.adjacency = make(map[Vertex]map[Vertex]Edge)
}
for _, v := range xv {
if _, exists := g.adjacency[v]; !exists {
g.adjacency[v] = make(map[Vertex]Edge)
}
}
}
// DeleteVertex uses variadic input to delete all listed vertices from the
// graph.
func (g *Graph) DeleteVertex(xv ...Vertex) {
if len(xv) == 1 {
v := xv[0]
delete(g.adjacency, v)
for k := range g.adjacency {
delete(g.adjacency[k], v)
}
return
}
// handles case len(xv) == 0 and len(xv) > 1
for _, v := range xv {
g.DeleteVertex(v)
}
}
// AddEdge adds a directed edge to the graph from v1 to v2.
func (g *Graph) AddEdge(v1, v2 Vertex, e Edge) {
// NOTE: this doesn't allow more than one edge between two vertexes...
g.AddVertex(v1, v2) // supports adding N vertices now
// TODO: check if an edge exists to avoid overwriting it!
// NOTE: VertexMerge() depends on overwriting it at the moment...
g.adjacency[v1][v2] = e
}
// DeleteEdge uses variadic input to delete all the listed edges from the graph.
func (g *Graph) DeleteEdge(xe ...Edge) {
if len(xe) == 0 {
return
}
// handles case len(xv) > 0
for v1 := range g.adjacency {
for v2, edge := range g.adjacency[v1] {
for _, e := range xe {
if e == edge {
delete(g.adjacency[v1], v2)
}
}
}
}
}
// HasVertex returns if the input vertex exists in the graph.
func (g *Graph) HasVertex(v Vertex) bool {
if _, exists := g.adjacency[v]; exists {
return true
}
return false
}
// NumVertices returns the number of vertices in the graph.
func (g *Graph) NumVertices() int {
return len(g.adjacency)
}
// NumEdges returns the number of edges in the graph.
func (g *Graph) NumEdges() int {
count := 0
for k := range g.adjacency {
count += len(g.adjacency[k])
}
return count
}
// Adjacency returns the adjacency map representing this graph. This is useful
// for users who which to operate on the raw data structure more efficiently.
// This works because maps are reference types so we can edit this at will.
func (g *Graph) Adjacency() map[Vertex]map[Vertex]Edge {
return g.adjacency
}
// FindEdge returns the edge from v1 -> v2 if it exists. Otherwise nil.
func (g *Graph) FindEdge(v1, v2 Vertex) Edge {
x, exists := g.adjacency[v1]
if !exists {
return nil // not found
}
edge, exists := x[v2]
if !exists {
return nil
}
return edge
}
// LookupEdge takes an edge and tries to find the vertex pair that connects it.
// If it finds a match, then it returns the pair and true. Otherwise it returns
// false.
func (g *Graph) LookupEdge(e Edge) (Vertex, Vertex, bool) {
for v1, x := range g.adjacency {
for v2, edge := range x {
if edge == e {
return v1, v2, true
}
}
}
return nil, nil, false // not found
}
// Vertices returns a randomly sorted slice of all vertices in the graph. The
// order is random, because the map implementation is intentionally so!
func (g *Graph) Vertices() []Vertex {
var vertices []Vertex
for k := range g.adjacency {
vertices = append(vertices, k)
}
return vertices
}
// Edges returns a randomly sorted slice of all edges in the graph. The order is
// random, because the map implementation is intentionally so!
func (g *Graph) Edges() []Edge {
var edges []Edge
for vertex := range g.adjacency {
for _, edge := range g.adjacency[vertex] {
edges = append(edges, edge)
}
}
return edges
}
// VerticesChan returns a channel of all vertices in the graph.
func (g *Graph) VerticesChan() chan Vertex {
ch := make(chan Vertex)
go func(ch chan Vertex) {
for k := range g.adjacency {
ch <- k
}
close(ch)
}(ch)
return ch
}
// VertexSlice is a linear list of vertices. It can be sorted.
type VertexSlice []Vertex
// Len returns the length of the slice of vertices.
func (vs VertexSlice) Len() int { return len(vs) }
// Swap swaps two elements in the slice.
func (vs VertexSlice) Swap(i, j int) { vs[i], vs[j] = vs[j], vs[i] }
// Less returns the smaller element in the sort order.
func (vs VertexSlice) Less(i, j int) bool {
a := vs[i].String()
b := vs[j].String()
if a == b { // fallback to ptr compare
return fmt.Sprintf("%p", vs[i]) < fmt.Sprintf("%p", vs[j])
}
return a < b
}
// Sort is a convenience method.
func (vs VertexSlice) Sort() { sort.Sort(vs) }
// VerticesSorted returns a sorted slice of all vertices in the graph. The order
// is sorted by String() to avoid the non-determinism in the map type.
func (g *Graph) VerticesSorted() []Vertex {
var vertices []Vertex
for k := range g.adjacency {
vertices = append(vertices, k)
}
sort.Sort(VertexSlice(vertices)) // add determinism
return vertices
}
// String makes the graph pretty print.
func (g *Graph) String() string {
if g == nil { // don't panic if we're printing a nil graph
return fmt.Sprintf("%v", nil) // prints a <nil>
}
return fmt.Sprintf("Vertices(%d), Edges(%d)", g.NumVertices(), g.NumEdges())
}
// Sprint prints a full graph in textual form out to a string. To log this you
// might want to use Logf, which will keep everything aligned with whatever your
// logging prefix is. This function returns the result in a deterministic order.
func (g *Graph) Sprint() string {
if g == nil {
return ""
}
var str string
for _, v := range g.VerticesSorted() {
str += fmt.Sprintf("Vertex: %s\n", v)
}
for _, v1 := range g.VerticesSorted() {
vs := []Vertex{}
for v2 := range g.Adjacency()[v1] {
vs = append(vs, v2)
}
sort.Sort(VertexSlice(vs)) // deterministic order
for _, v2 := range vs {
e := g.Adjacency()[v1][v2]
str += fmt.Sprintf("Edge: %s -> %s # %s\n", v1, v2, e)
}
}
return strings.TrimSuffix(str, "\n") // trim off trailing \n if it exists
}
// Logf logs a printed representation of the graph with the logf of your choice.
// This is helpful to ensure each line of logged output has the prefix you want.
func (g *Graph) Logf(logf func(format string, v ...interface{})) {
for _, x := range strings.Split(g.Sprint(), "\n") {
logf("%s", x)
}
}
// IncomingGraphVertices returns an array (slice) of all directed vertices to
// vertex v (??? -> v). OKTimestamp should probably use this.
func (g *Graph) IncomingGraphVertices(v Vertex) []Vertex {
// TODO: we might be able to implement this differently by reversing
// the Adjacency graph and then looping through it again...
var s []Vertex
for k := range g.adjacency { // reverse paths
for w := range g.adjacency[k] {
if w == v {
s = append(s, k)
}
}
}
return s
}
// OutgoingGraphVertices returns an array (slice) of all vertices that vertex v
// points to (v -> ???). Poke should probably use this.
func (g *Graph) OutgoingGraphVertices(v Vertex) []Vertex {
var s []Vertex
for k := range g.adjacency[v] { // forward paths
s = append(s, k)
}
return s
}
// GraphVertices returns an array (slice) of all vertices that connect to vertex
// v. This is the union of IncomingGraphVertices and OutgoingGraphVertices.
func (g *Graph) GraphVertices(v Vertex) []Vertex {
var s []Vertex
s = append(s, g.IncomingGraphVertices(v)...)
s = append(s, g.OutgoingGraphVertices(v)...)
return s
}
// IncomingGraphEdges returns all of the edges that point to vertex v.
// Eg: (??? -> v).
func (g *Graph) IncomingGraphEdges(v Vertex) []Edge {
var edges []Edge
for v1 := range g.adjacency { // reverse paths
for v2, e := range g.adjacency[v1] {
if v2 == v {
edges = append(edges, e)
}
}
}
return edges
}
// OutgoingGraphEdges returns all of the edges that point from vertex v.
// Eg: (v -> ???).
func (g *Graph) OutgoingGraphEdges(v Vertex) []Edge {
var edges []Edge
for _, e := range g.adjacency[v] { // forward paths
edges = append(edges, e)
}
return edges
}
// GraphEdges returns an array (slice) of all edges that connect to vertex v.
// This is the union of IncomingGraphEdges and OutgoingGraphEdges.
func (g *Graph) GraphEdges(v Vertex) []Edge {
var edges []Edge
edges = append(edges, g.IncomingGraphEdges(v)...)
edges = append(edges, g.OutgoingGraphEdges(v)...)
return edges
}
// DFS returns a depth first search for the graph, starting at the input vertex.
func (g *Graph) DFS(start Vertex) []Vertex {
var d []Vertex // discovered
var s []Vertex // stack
if _, exists := g.adjacency[start]; !exists {
return nil // TODO: error
}
v := start
s = append(s, v)
for len(s) > 0 {
v, s = s[len(s)-1], s[:len(s)-1] // s.pop()
if !VertexContains(v, d) { // if not discovered
d = append(d, v) // label as discovered
for _, w := range g.GraphVertices(v) {
s = append(s, w)
}
}
}
return d
}
// FilterGraph builds a new graph containing only vertices from the list.
func (g *Graph) FilterGraph(vertices []Vertex) (*Graph, error) {
fn := func(v Vertex) (bool, error) {
return VertexContains(v, vertices), nil
}
return g.FilterGraphWithFn(fn)
}
// FilterGraphWithFn builds a new graph containing only vertices which match. It
// uses a user defined function to match. That function must return true on
// match, and an error if anything goes wrong.
func (g *Graph) FilterGraphWithFn(fn func(Vertex) (bool, error)) (*Graph, error) {
newGraph, err := NewGraph(g.Name)
if err != nil {
return nil, err
}
for k1, x := range g.adjacency {
contains, err := fn(k1)
if err != nil {
return nil, errwrap.Wrapf(err, "fn in FilterGraphWithFn() errored")
} else if contains {
newGraph.AddVertex(k1)
}
for k2, e := range x {
innerContains, err := fn(k2)
if err != nil {
return nil, errwrap.Wrapf(err, "fn in FilterGraphWithFn() errored")
}
if contains && innerContains {
newGraph.AddEdge(k1, k2, e)
}
}
}
return newGraph, nil
}
// DisconnectedGraphs returns a list containing the N disconnected graphs.
func (g *Graph) DisconnectedGraphs() ([]*Graph, error) {
graphs := []*Graph{}
var start Vertex
var d []Vertex // discovered
c := g.NumVertices()
for len(d) < c {
// get an undiscovered vertex to start from
for _, s := range g.Vertices() {
if !VertexContains(s, d) {
start = s
}
}
// dfs through the graph
dfs := g.DFS(start)
// filter all the collected elements into a new graph
// TODO: is this method of filtering correct here? && or || ?
newGraph, err := g.FilterGraph(dfs)
if err != nil {
return nil, errwrap.Wrapf(err, "could not run DisconnectedGraphs() properly")
}
// add number of elements found to found variable
d = append(d, dfs...) // extend
// append this new graph to the list
graphs = append(graphs, newGraph)
// if we've found all the elements, then we're done
// otherwise loop through to continue...
}
return graphs, nil
}
// InDegree returns the count of vertices that point to me in one big lookup
// map.
func (g *Graph) InDegree() map[Vertex]int {
result := make(map[Vertex]int)
if g == nil || g.adjacency == nil {
return result
}
for k := range g.adjacency {
result[k] = 0 // initialize
}
for k := range g.adjacency {
for z := range g.adjacency[k] {
result[z]++
}
}
return result
}
// OutDegree returns the count of vertices that point away in one big lookup
// map.
func (g *Graph) OutDegree() map[Vertex]int {
result := make(map[Vertex]int)
if g == nil || g.adjacency == nil {
return result
}
for k := range g.adjacency {
result[k] = 0 // initialize
for range g.adjacency[k] {
result[k]++
}
}
return result
}
// TopologicalSort returns the sort of graph vertices in that order. It is based
// on descriptions and code from wikipedia and rosetta code.
// TODO: add memoization, and cache invalidation to speed this up :)
func (g *Graph) TopologicalSort() ([]Vertex, error) { // kahn's algorithm
var L []Vertex // empty list that will contain the sorted elements
var S []Vertex // set of all nodes with no incoming edges
remaining := make(map[Vertex]int) // amount of edges remaining
for v, d := range g.InDegree() {
if d == 0 {
// accumulate set of all nodes with no incoming edges
S = append(S, v)
} else {
// initialize remaining edge count from indegree
remaining[v] = d
}
}
for len(S) > 0 {
last := len(S) - 1 // remove a node v from S
v := S[last]
S = S[:last]
L = append(L, v) // add v to tail of L
for n := range g.adjacency[v] {
// for each node n remaining in the graph, consume from
// remaining, so for remaining[n] > 0
if remaining[n] > 0 {
remaining[n]-- // remove edge from the graph
if remaining[n] == 0 { // if n has no other incoming edges
S = append(S, n) // insert n into S
}
}
}
}
// if graph has edges, eg if any value in rem is > 0
for c, in := range remaining {
if in > 0 {
for n := range g.adjacency[c] {
if remaining[n] > 0 {
return nil, ErrNotAcyclic
}
}
}
}
return L, nil
}
// DeterministicTopologicalSort returns the sort of graph vertices in a stable
// topological sort order. It's slower than the TopologicalSort implementation,
// but guarantees that two identical graphs produce the same sort each time.
// TODO: add memoization, and cache invalidation to speed this up :)
func (g *Graph) DeterministicTopologicalSort() ([]Vertex, error) { // kahn's algorithm
var L []Vertex // empty list that will contain the sorted elements
var S []Vertex // set of all nodes with no incoming edges
remaining := make(map[Vertex]int) // amount of edges remaining
var vertices []Vertex
indegree := g.InDegree()
for k := range indegree {
vertices = append(vertices, k)
}
sort.Sort(VertexSlice(vertices)) // add determinism
//for v, d := range g.InDegree()
for _, v := range vertices { // map[Vertex]int
d := indegree[v]
if d == 0 {
// accumulate set of all nodes with no incoming edges
S = append(S, v)
} else {
// initialize remaining edge count from indegree
remaining[v] = d
}
}
for len(S) > 0 {
last := len(S) - 1 // remove a node v from S
v := S[last]
S = S[:last]
L = append(L, v) // add v to tail of L
// This doesn't need to loop in a deterministically sorted order.
for n := range g.adjacency[v] { // map[Vertex]Edge
// for each node n remaining in the graph, consume from
// remaining, so for remaining[n] > 0
if remaining[n] > 0 {
remaining[n]-- // remove edge from the graph
if remaining[n] == 0 { // if n has no other incoming edges
S = append(S, n) // insert n into S
}
}
}
}
// if graph has edges, eg if any value in rem is > 0
for c, in := range remaining {
if in > 0 {
for n := range g.adjacency[c] {
if remaining[n] > 0 {
return nil, ErrNotAcyclic
}
}
}
}
return L, nil
}
// Reachability finds the shortest path in a DAG from a to b, and returns the
// slice of vertices that matched this particular path including both a and b.
// It returns nil if a or b is nil, and returns empty list if no path is found.
// Since there could be more than one possible result for this operation, we
// arbitrarily choose one of the shortest possible. As a result, this should
// actually return a tree if we cared about correctness.
//
// This operates by a recursive algorithm; a more efficient version is likely.
// If you don't give this function a DAG, you might cause infinite recursion!
func (g *Graph) Reachability(a, b Vertex) ([]Vertex, error) {
if a == nil || b == nil {
return nil, fmt.Errorf("empty vertex")
}
if _, err := g.TopologicalSort(); err != nil {
return nil, err // not a dag
}
vertices := g.OutgoingGraphVertices(a) // what points away from a ?
if len(vertices) == 0 {
return []Vertex{}, nil // nope
}
if VertexContains(b, vertices) {
return []Vertex{a, b}, nil // found
}
// TODO: parallelize this with go routines?
var collected = make([][]Vertex, len(vertices))
var err error
pick := -1
for i, v := range vertices {
collected[i], err = g.Reachability(v, b) // find b by recursion
if err != nil {
return nil, err
}
if l := len(collected[i]); l > 0 {
// pick shortest path
// TODO: technically i should return a tree
if pick < 0 || l < len(collected[pick]) {
pick = i
}
}
}
if pick < 0 {
return []Vertex{}, nil // nope
}
result := []Vertex{a} // tack on a
result = append(result, collected[pick]...)
return result, nil
}
// VertexMatchFn searches for a vertex in the graph and returns the vertex if
// one matches. It uses a user defined function to match. That function must
// return true on match, and an error if anything goes wrong.
func (g *Graph) VertexMatchFn(fn func(Vertex) (bool, error)) (Vertex, error) {
for v := range g.adjacency {
if b, err := fn(v); err != nil {
return nil, errwrap.Wrapf(err, "fn in VertexMatchFn() errored")
} else if b {
return v, nil
}
}
return nil, nil // nothing found
}
// GraphCmp compares the topology of this graph to another and returns nil if
// they're equal. It uses a user defined function to compare topologically
// equivalent vertices, and edges.
// FIXME: add more test cases
func (g *Graph) GraphCmp(graph *Graph, vertexCmpFn func(Vertex, Vertex) (bool, error), edgeCmpFn func(Edge, Edge) (bool, error)) error {
if graph == nil || g == nil {
if graph != g {
return fmt.Errorf("one graph is nil")
}
return nil
}
n1, n2 := g.NumVertices(), graph.NumVertices()
if n1 != n2 {
return fmt.Errorf("base graph has %d vertices, while input graph has %d", n1, n2)
}
if e1, e2 := g.NumEdges(), graph.NumEdges(); e1 != e2 {
return fmt.Errorf("base graph has %d edges, while input graph has %d", e1, e2)
}
var m = make(map[Vertex]Vertex) // g to graph vertex correspondence
Loop:
// check vertices
for v1 := range g.Adjacency() { // for each vertex in g
for v2 := range graph.Adjacency() { // does it match in graph ?
b, err := vertexCmpFn(v1, v2)
if err != nil {
return errwrap.Wrapf(err, "could not run vertexCmpFn() properly")
}
// does it match ?
if b {
m[v1] = v2 // store the mapping
continue Loop
}
}
return fmt.Errorf("base graph, has no match in input graph for: %s", v1)
}
// vertices match :)
// is the mapping the right length?
if n1 := len(m); n1 != n2 {
return fmt.Errorf("mapping only has correspondence of %d, when it should have %d", n1, n2)
}
// check if mapping is unique (are there duplicates?)
m1 := []Vertex{}
m2 := []Vertex{}
for k, v := range m {
if VertexContains(k, m1) {
return fmt.Errorf("mapping from %s is used more than once to: %s", k, m1)
}
if VertexContains(v, m2) {
return fmt.Errorf("mapping to %s is used more than once from: %s", v, m2)
}
m1 = append(m1, k)
m2 = append(m2, v)
}
// check edges
for v1 := range g.Adjacency() { // for each vertex in g
v2 := m[v1] // lookup in map to get correspondance
// g.Adjacency()[v1] corresponds to graph.Adjacency()[v2]
if e1, e2 := len(g.Adjacency()[v1]), len(graph.Adjacency()[v2]); e1 != e2 {
return fmt.Errorf("base graph, vertex(%s) has %d edges, while input graph, vertex(%s) has %d", v1, e1, v2, e2)
}
for vv1, ee1 := range g.Adjacency()[v1] {
vv2 := m[vv1]
ee2 := graph.Adjacency()[v2][vv2]
// these are edges from v1 -> vv1 via ee1 (graph 1)
// to cmp to edges from v2 -> vv2 via ee2 (graph 2)
// check: (1) vv1 == vv2 ? (we've already checked this!)
// check: (2) ee1 == ee2
b, err := edgeCmpFn(ee1, ee2)
if err != nil {
return errwrap.Wrapf(err, "could not run edgeCmpFn() properly")
}
if !b {
return fmt.Errorf("base graph edge(%s) doesn't match input graph edge(%s)", ee1, ee2)
}
}
}
return nil // success!
}
// VertexContains is an "in array" function to test for a vertex in a slice of
// vertices.
func VertexContains(needle Vertex, haystack []Vertex) bool {
for _, v := range haystack {
if needle == v {
return true
}
}
return false
}
// EdgeContains is an "in array" function to test for an edge in a slice of
// edges.
func EdgeContains(needle Edge, haystack []Edge) bool {
for _, v := range haystack {
if needle == v {
return true
}
}
return false
}
// Reverse reverses a list of vertices.
func Reverse(vs []Vertex) []Vertex {
out := []Vertex{}
l := len(vs)
for i := range vs {
out = append(out, vs[l-i-1])
}
return out
}
// Sort the list of vertices and return a copy without modifying the input.
func Sort(vs []Vertex) []Vertex {
vertices := []Vertex{}
for _, v := range vs { // copy
vertices = append(vertices, v)
}
sort.Sort(VertexSlice(vertices))
return vertices
// sort.Sort(VertexSlice(vs)) // this is wrong, it would modify input!
//return vs
}
|