File: 2dfuzzysegment.cc

package info (click to toggle)
mia 2.2.2-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 13,532 kB
  • ctags: 16,800
  • sloc: cpp: 137,909; python: 1,057; ansic: 998; sh: 146; xml: 127; csh: 24; makefile: 13
file content (143 lines) | stat: -rw-r--r-- 4,746 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
/* -*- mia-c++  -*-
 *
 * This file is part of MIA - a toolbox for medical image analysis 
 * Copyright (c) Leipzig, Madrid 1999-2014 Gert Wollny
 *
 * MIA is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with MIA; if not, see <http://www.gnu.org/licenses/>.
 *
 */

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include <fstream>
#include <cstdlib>
#include <string>
//#include <dlfcn.h>
#include <algorithm>

#include <mia/2d/fuzzyseg.hh>
#include <mia/core/cmdlineparser.hh>

NS_MIA_USE
using namespace std;

const SProgramDescription g_description = {
	{pdi_group, "Analysis, filtering, combining, and segmentation of 2D images"}, 
	{pdi_short, "A fuzzy c-means segmentation of a 2D image"}, 
	{pdi_description, "This program runs a combined fuzzy c-means clustering and "
	 "B-field correction to facilitate a fuzzy segmentation of 2D image. cf D.L. "
	 "Pham and J.L.Prince, \"An adaptive fuzzy C-means algorithm for image "
	 "segmentation in the presence of intensity inhomogeneities\", Pat. Rec. "
	 "Let., 20:57-68,1999"}, 
	{pdi_example_descr, "Run a 5-class segmentation over input image input.v "
	 "and store the class probability images in cls.v and the B0-field corrected "
	 "image in b0.v."}, 
	{pdi_example_code, "-i input.v -c 5 -o b0.v -c cls.v"}
}; 

int do_main( int argc, char *argv[] )
{


	string in_filename;
	string out_filename;
	string gain_filename;
	string cls_filename;
	int    noOfClasses = 3;
	SFuzzySegParams params; 

	const auto& imageio = C2DImageIOPluginHandler::instance();



	CCmdOptionList options(g_description);
	options.set_group("File-IO"); 
	options.add(make_opt( in_filename, "in-file", 'i',
			      "input image(s) to be segmenetd", CCmdOptionFlags::required_input, &imageio));
	options.add(make_opt( cls_filename, "cls-file", 'c',
			      "output class probability images (floating point values and multi-image)", 
			      CCmdOptionFlags::output, &imageio));
	options.add(make_opt( out_filename, "b0-file", 'o', "image corrected for intensity non-uniformity", 
			      CCmdOptionFlags::output, &imageio ));
	options.add(make_opt( gain_filename, "gain-file", 'g', "gain field (floating point valued)", 
			      CCmdOptionFlags::output, &imageio ));

	options.set_group("Parameters"); 
	options.add(make_opt( noOfClasses, "no-of-classes", 'n',
			      "number of classes"));
	options.add(make_opt( params.residuum, "residuum", 'r', "relative residuum"));
	options.add(make_opt( params.lambda1, "l1", 0, "Penalize magnitude of intensity inhomogeinity correction"));
	options.add(make_opt( params.lambda2, "l2", 0, "Smoothness of intensity inhomogeinity correction"));

	if (options.parse(argc, argv) != CCmdOptionList::hr_no)
		return EXIT_SUCCESS; 

	// required options (anything that has no default value)
	if ( in_filename.empty() )
		throw runtime_error("'--in-file'  ('i') option required\n");
	if ( in_filename.empty() )
		throw runtime_error("'--cls-file' ('c') option required\n");


	C2DImageIOPluginHandler::Instance::PData inImage_list = imageio.load(in_filename);

	if (!inImage_list.get() || !inImage_list->size() ) {
		string not_found = ("No supported data found in ") + in_filename;
		throw runtime_error(not_found);
	}

	// segment image
	if (inImage_list->size() > 1)
		cvwarn() << "Only segmenting first input image\n";

	C2DImageVector classes;
	P2DImage gain; 
	P2DImage b0_corrected = fuzzy_segment_2d(**inImage_list->begin(), noOfClasses, params, classes, gain);

	if (!out_filename.empty()) {

		// save corrected image to out-file
		C2DImageIOPluginHandler::Instance::Data out_list;

		out_list.push_back(b0_corrected);
		if ( !imageio.save(out_filename, out_list) ){

			string not_save = ("unable to save result to ") + out_filename;
			throw runtime_error(not_save);

		};

	};

	//CHistory::instance().append(argv[0], revision, opts);

	if ( !imageio.save(cls_filename, classes) ){
		string not_save = ("unable to save result to ") + cls_filename;
		throw runtime_error(not_save);

	}

	if (!gain_filename.empty()) {
		if (!save_image(gain_filename, gain)) 
			throw create_exception<runtime_error>( "unable to save gain field to '", gain_filename, "'"); 
	}
	
	return EXIT_SUCCESS;

}

#include <mia/internal/main.hh>
MIA_MAIN(do_main);