File: sor_solver.cc

package info (click to toggle)
mia 2.2.2-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 13,532 kB
  • ctags: 16,800
  • sloc: cpp: 137,909; python: 1,057; ansic: 998; sh: 146; xml: 127; csh: 24; makefile: 13
file content (413 lines) | stat: -rw-r--r-- 12,343 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
/* -*- mia-c++  -*-
 *
 * This file is part of MIA - a toolbox for medical image analysis 
 * Copyright (c) Leipzig, Madrid 1999-2014 Gert Wollny
 *
 * MIA is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with MIA; if not, see <http://www.gnu.org/licenses/>.
 *
 */

#include <errno.h>

#include <mia/core/threadedmsg.hh>
#include <tbb/parallel_reduce.h>
#include <tbb/blocked_range.h>

#include "sor_solver.hh"



#include <iostream>
using namespace std;
using namespace mia;

TSORSolver::TSORSolver(int _max_steps, float _rel_res, float _abs_res,
		       float mu, float lambda):
	TFluidHomogenSolver(_max_steps,_rel_res, _abs_res,mu,lambda), 
	d_xy(0)
{
}

float TSORSolver::solve_at_very_old(const C3DFVectorfield& B,C3DFVectorfield *V,size_t  x, size_t  y, size_t  z)
{
	C3DFVector vdxx = (*V)(x-1,y,z) + (*V)(x+1,y,z); // 3A
	C3DFVector vdyy = (*V)(x,y-1,z) + (*V)(x,y+1,z); // 3A
	C3DFVector vdzz = (*V)(x,y,z-1) + (*V)(x,y,z+1); // 3A

	const C3DFVector& Vm1m1p0 = (*V)(x-1,y-1,z);
	const C3DFVector& Vp1p1p0 = (*V)(x+1,y+1,z);
	const C3DFVector& Vp1m1p0 = (*V)(x+1,y-1,z);
	const C3DFVector& Vm1p1p0 = (*V)(x-1,y+1,z);
	float  vydxy = Vm1m1p0.y + Vp1p1p0.y - Vp1m1p0.y - Vm1p1p0.y;  // 3A
	float  vxdxy = Vm1m1p0.x + Vp1p1p0.x - Vp1m1p0.x - Vm1p1p0.x;  // 3A

	const C3DFVector& Vm1p0m1 = (*V)(x-1,y,z-1);
	const C3DFVector& Vp1p0p1 = (*V)(x+1,y,z+1);
	const C3DFVector& Vp1p0m1 = (*V)(x+1,y,z-1);
	const C3DFVector& Vm1p0p1 = (*V)(x-1,y,z+1);
	float  vzdxz = Vm1p0m1.z + Vp1p0p1.z - Vp1p0m1.z - Vm1p0p1.z; // 3A
	float  vxdxz = Vm1p0m1.x + Vp1p0p1.x - Vp1p0m1.x - Vm1p0p1.x; // 3A

	const C3DFVector& Vp0m1m1 = (*V)(x,y-1,z-1);
	const C3DFVector& Vp0p1p1 = (*V)(x,y+1,z+1);
	const C3DFVector& Vp0p1m1 = (*V)(x,y+1,z-1);
	const C3DFVector& Vp0m1p1 = (*V)(x,y-1,z+1);
	float  vzdyz = Vp0m1m1.z + Vp0p1p1.z  - Vp0p1m1.z - Vp0m1p1.z; // 3A
	float  vydyz = Vp0m1m1.y + Vp0p1p1.y  - Vp0p1m1.y - Vp0m1p1.y; // 3A

	C3DFVector p((a_b)*vdxx.x + a*(vdyy.x+vdzz.x),        // 6A 6M
		     (a_b)*vdyy.y + a*(vdxx.y+vdzz.y),
		     (a_b)*vdzz.z + a*(vdxx.z+vdyy.z));

	C3DFVector q(vydxy+vzdxz,vxdxy+vzdyz,vxdxz+vydyz);   // 3A

	C3DFVector R = (B(x,y,z)) + p + b_4 * q;            // 6A 3M
	C3DFVector S = (c * R);      // 3A 6M
	C3DFVector delta = S -  (*V)(x,y,z);
	(*V)(x,y,z) = S;                             // 3A
	return delta.norm2();	                             // 2A 3M
	// SUM: 50A 18M
}



float TSORSolver::solve_at(C3DFVector *Data, const C3DFVector& bv){
	int sizex = size.x;
	C3DFVector *Data_alt = &Data[ -d_xy ];
	C3DFVector q;
	C3DFVector p;

	q.z = Data_alt[-sizex].y; // D( 0,-1,-1).y
	q.y = Data_alt[-sizex].z; // D( 0,-1,-1).z

	q.z += Data_alt[-1].x;    // D(-1, 0,-1).x
	q.x = Data_alt[-1].z;     // D(-1, 0,-1).z

	q.z -= Data_alt[ 1].x;    // D( 1, 0,-1).x
	q.x -= Data_alt[ 1].z;    // D( 1, 0,-1).z

	q.z -= Data_alt[sizex].y; // D( 0, 1,-1).y
	q.y -= Data_alt[sizex].z; // D( 0, 1,-1).z

	Data_alt = &Data[ d_xy ];
	q.z -= Data_alt[-sizex].y; // D( 0,-1, 1).y
	q.y -= Data_alt[-sizex].z; // D( 0,-1, 1).z
	q.z -= Data_alt[-1].x;     // D(-1, 0,-1).x
	q.x -= Data_alt[-1].z;     // D(-1, 0,-1).z

	q.z += Data_alt[ 1].x;     // D( 1, 0,-1).x
	q.x += Data_alt[ 1].z;     // D( 1, 0,-1).z

	q.z += Data_alt[sizex].y;  // D( 0, 1, 1).y
	q.y += Data_alt[sizex].z;  // D( 0, 1, 1).z

	Data_alt = Data - size.x ;

	q.y += Data_alt[-1].x;     // D(-1,-1, 0).x
	q.x += Data_alt[-1].y;     // D(-1,-1, 0).y

	q.y -= Data_alt[ 1].x;     // D( 1,-1, 0).x
	q.x -= Data_alt[ 1].y;     // D( 1,-1, 0).y

	Data_alt = Data + size.x;

	q.y -= Data_alt[-1].x;     // D(-1, 1, 0).x
	q.x -= Data_alt[-1].y;     // D(-1, 1, 0).y

	q.y += Data_alt[ 1].x;     // D( 1, 1, 0).x
	q.x += Data_alt[ 1].y;     // D( 1, 1, 0).y


	q.x *= b_4;
	p.x  = Data[-1].x;         // D(-1, 0, 0).x

	q.y *= b_4;
	p.y  = Data[-sizex].y;     // D( 0,-1, 0).y

	q.z *= b_4;
	p.z  = Data[-d_xy].z;      // D( 0, 0,-1).z


	p.x += Data[ 1].x;         // D( 1, 0, 0).x
	p.y += Data[sizex].y;      // D( 0, 1, 0).y
	p.z += Data[d_xy].z;       // D( 0, 0, 1).z

	p *= a_b;

	q += p;

	p.x  = Data[-d_xy].x;     // D( 0, 0,-1).x
	p.y  = Data[-d_xy].y;     // D( 0, 0,-1).y

	p.x += Data[-sizex].x;    // D( 0,-1, 0).x
	p.z  = Data[-sizex].z;    // D( 0,-1, 0).z

	p.y += Data[-1].y;        // D(-1, 0, 0).y
	p.z += Data[-1].z; 	 // D(-1, 0, 0).z

	p.y += Data[ 1].y;        // D( 1, 0, 0).y
	p.z += Data[ 1].z;        // D( 1, 0, 0).z

	p.x += Data[sizex].x;     // D( 0, 1, 0).x
	p.z += Data[sizex].z;     // D( 0, 1, 0).z

	p.x += Data[d_xy].x;      // D( 0, 0, 1).x
	p.y += Data[d_xy].y;      // D( 0, 0, 1).y

	p *= a;
	q += p;
	q += bv;
	q *= c;
	p = q;
	p -= Data[0];

	Data[0] = q;

	return p.norm2();
}

float TSORSolver::solve_at_old(C3DFVector *Data,const C3DFVector& bv)
{
	C3DFVector *Data_alt = &Data[ -d_xy ];
	// caching data

	const C3DFVector Vp0m1m1 = Data_alt[ -size.x ];
	const C3DFVector Vm1p0m1 = Data_alt[ -1   ];
	const C3DFVector Vp0p0m1 = Data_alt[  0   ];
	const C3DFVector Vp1p0m1 = Data_alt[  1   ];
	const C3DFVector Vp0p1m1 = Data_alt[  size.x ];

	Data_alt = &Data[ -size.x ];
	const C3DFVector Vm1m1p0 = Data_alt[ -1 ];
	const C3DFVector Vp0m1p0 = Data_alt[  0 ];
	const C3DFVector Vp1m1p0 = Data_alt[  1 ];

	Data_alt = &Data[ size.x ];
	const C3DFVector Vm1p1p0 = Data_alt[ -1 ];
	const C3DFVector Vp0p1p0 = Data_alt[  0 ];
	const C3DFVector Vp1p1p0 = Data_alt[  1 ];

	const float  vxdxy = Vm1m1p0.x - Vp1m1p0.x + Vp1p1p0.x - Vm1p1p0.x;
	const float  vydxy = Vm1m1p0.y - Vp1m1p0.y + Vp1p1p0.y - Vm1p1p0.y;

	Data_alt = &Data[ d_xy ];
	const C3DFVector Vp0m1p1 = Data_alt[ -size.x ];
	const C3DFVector Vm1p0p1 = Data_alt[ -1   ];
	const C3DFVector Vp0p0p1 = Data_alt[  0   ];
	const C3DFVector Vp1p0p1 = Data_alt[  1   ];
	const C3DFVector Vp0p1p1 = Data_alt[  size.x ];

	const float  vxdxz = Vm1p0m1.x - Vp1p0m1.x + Vp1p0p1.x  - Vm1p0p1.x;
	const float  vzdxz = Vm1p0m1.z - Vp1p0m1.z + Vp1p0p1.z  - Vm1p0p1.z;



	const C3DFVector vdxx = Data[-1] + Data[1]; // 3A
	const C3DFVector vdyy = Vp0p1p0 + Vp0m1p0;
	const C3DFVector vdzz = Vp0p0p1 + Vp0p0m1;

	const float  vydyz = Vp0m1m1.y - Vp0p1m1.y + Vp0p1p1.y  - Vp0m1p1.y;
	const float  vzdyz = Vp0m1m1.z - Vp0p1m1.z + Vp0p1p1.z  - Vp0m1p1.z;



	const C3DFVector p((a_b)*vdxx.x + a*(vdyy.x+vdzz.x),        // 6A 6M
			   (a_b)*vdyy.y + a*(vdxx.y+vdzz.y),
			   (a_b)*vdzz.z + a*(vdxx.z+vdyy.z));

	const C3DFVector q(vydxy+vzdxz,vxdxy+vzdyz,vxdxz+vydyz);   // 3A
	const C3DFVector R = c *(bv + p + b_4 * q);            // 6A 3M

	const C3DFVector S = /*overrex */ ( R - *Data );      // 3A 6M
	*Data += S;                             // 3A


	return S.norm2();

}



int TSORSolver::solve(const C3DFVectorfield& b, C3DFVectorfield *xvf)
{
	assert(b.get_size() == xvf->get_size());


	size = b.get_size();
	d_xy = size.x * size.y;
	bool firsttime = true;
	int nIter = 0;
	float firstres=0;

	/*
	  This parallelization constituts a race conditions, i.e. reads and writes to the velocity field 
	  are not syncronized. This is not a big deal, because the solver is stable, in the worst case convergence 
	  is a bit slower. 
	 */
	auto solve_slice = [this, &b, &xvf](const tbb::blocked_range<size_t>& range, float res) -> float{
		CThreadMsgStream thread_stream;
		for (auto z = range.begin(); z != range.end();++z) {
			int hardcode = z * d_xy + size.x + 1;
			for (size_t  y = 1; y < size.y - 1; y++){
				for (size_t  x = 1; x < size.x - 1; x++,hardcode++) {
					C3DFVector bv = b[hardcode]; // cache on stack
					float r = solve_at(&(*xvf)[hardcode],bv);
					res += r; 
				}
				hardcode+=2;
			}
			hardcode += size.x << 1;
		}

		return res; 
	}; 

	float residuum = 0.0; 
	do {
		residuum = tbb::parallel_reduce( tbb::blocked_range<size_t>(1, size.z-1, 4), 0.0f, solve_slice, 
						 [](float x, float y){return x+y;}); 
		
		if (firsttime) {
			firstres = residuum;
			firsttime = false;
		}
		cvinfo() << "SORA: [" << ++nIter << "] res=" << residuum << "\n";
	} while (residuum > firstres * rel_res && nIter < max_steps && residuum > abs_res );

	// return why we have finished
	if (nIter >= max_steps) return 1;
	if (residuum < firstres * rel_res) return 2;
	if (residuum <abs_res) return 3;
	return 0;
}

TSORASolver::TSORASolver(int _max_steps, float _rel_res, float _abs_res,
			 float mu, float lambda):
	TSORSolver(_max_steps, _rel_res,_abs_res,mu,lambda)
{
}


int TSORASolver::solve(const C3DFVectorfield& b,C3DFVectorfield *xvf)
{
	float doorstep = 0;
	float res = 0;
	float firstres = 0;
	float lastres;


	assert(b.get_size() == xvf->get_size());
	size = b.get_size();
	d_xy = size.x * size.y;

	TUpdateInfo  *update_needed;
	TUpdateInfo  *need_update;
	TUpdateInfo update_info_1(size);
	TUpdateInfo update_info_2(size);
	C3DFDatafield residua(size);

	update_needed = &update_info_1;
	need_update = &update_info_2;

	float  gSize = b.get_size().z *  b.get_size().y * b.get_size().x;

	cvinfo() << "SORA: [" << gSize << "]\n";

	/*
	  This parallelization constituts a race conditions, i.e. reads and writes to the velocity field 
	  are not syncronized. This shouldn't be a big deal, because in the worst case the solver reads a value that is 
	  not yet updated, which corresponds to the a habdling like there was no update at all, an actual feature of the 
	  algorithm. Since solver is stable, in the worst case convergence is a bit slower. 
	  Neverteless, copying the data to a local cache to avoid this race may be better, because it would also speed 
	  up memory access.
	*/
	auto first_run =[this, &b, &xvf, &residua, &update_needed]
		(const tbb::blocked_range<size_t>& range, float firstres) -> float {
		CThreadMsgStream thread_stream;
		for (auto z = range.begin(); z != range.end();++z) {
			int hardcode = z * d_xy + size.x + 1;
			for (size_t  y = 1; y < size.y - 1; y++){
				for (size_t  x = 1; x < size.x - 1; x++,hardcode++) {
					C3DFVector bv = b[hardcode]; // cache on stack		
					if (bv.norm2() > 0) {
						float step;
						firstres += (residua[hardcode] = step =
							     solve_at(&(*xvf)[hardcode],bv));
						if (step > 0){
							update_needed->set_update(hardcode);
						}
					}
				}
				hardcode+=2;
			}
			hardcode += size.x << 1;
		}
		return firstres; 
	};
	
	firstres = tbb::parallel_reduce( tbb::blocked_range<size_t>(1, size.z-1, 4), 0.0f, first_run, 
				    [](float x, float y){return x+y;}); 

	doorstep = firstres / gSize;
	lastres = firstres;
	int nIter = 1;

	auto iterate_run =[this, &b, &xvf, &doorstep, &residua, &update_needed, &need_update](const tbb::blocked_range<size_t>& range, float res) -> float {
		CThreadMsgStream thread_stream;
		for (auto z = range.begin(); z != range.end();++z) {
			int hardcode = z * d_xy + size.x + 1;
			for (size_t  y = 1; y < size.y - 1; y++){
				auto ixvf =  &(*xvf)[hardcode];
				for (size_t  x = 1; x < size.x - 1; x++,hardcode++, ++ixvf) {
					float  step;
					if ((*update_needed)[hardcode]) {
						C3DFVector bv = b[hardcode];
						residua[hardcode] = step =
							solve_at(ixvf,bv);
					}else
						step = residua[hardcode];

					if (step > doorstep) {
						need_update->set_update(hardcode);
					}
					res += step;
				}
				hardcode+=2;
			}
			hardcode += size.x << 1;
		}
		return res; 
	};

	do {
		res = tbb::parallel_reduce( tbb::blocked_range<size_t>(1, size.z-1, 4), 0.0f, iterate_run, 
					    [](float x, float y){return x+y;}); 
		
		doorstep = res * res / (gSize * lastres * nIter * nIter);
		lastres = res;
		
		// FIXME replace this by STL confom fill
		update_needed->clear();

		std::swap(update_needed, need_update); 
		cvinfo() << "SORA: [" << ++nIter << "]" << res << "\n";
	}while (res > firstres * rel_res && nIter < max_steps && res > abs_res );

	// return why we have finished
	if (nIter >= max_steps) return 1;
	if (res < firstres * rel_res) return 2;
	if (res <abs_res) return 3;
	return 0;
}