File: splits.go

package info (click to toggle)
micro 2.0.15-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 3,128 kB
  • sloc: sh: 265; makefile: 77; xml: 53
file content (549 lines) | stat: -rw-r--r-- 12,182 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
package views

import (
	"fmt"
	"strings"
)

type SplitType uint8

const (
	STVert  = 0
	STHoriz = 1
	STUndef = 2
)

var idcounter uint64

// NewID returns a new unique id
func NewID() uint64 {
	idcounter++
	return idcounter
}

// A View is a size and location of a split
type View struct {
	X, Y int
	W, H int
}

// A Node describes a split in the tree
// If a node is a leaf node then it corresponds to a buffer that is being
// displayed otherwise it has a number of children of the opposite type
// (vertical splits have horizontal children and vice versa)
type Node struct {
	View

	Kind SplitType

	parent   *Node
	children []*Node

	// Nodes can be marked as non resizable if they shouldn't be rescaled
	// when the terminal window is resized or when a new split is added
	// Only the splits on the edges of the screen can be marked as non resizable
	canResize bool
	// A node may also be marked with proportional scaling. This means that when
	// the window is resized the split maintains its proportions
	propScale bool

	// Defines the proportion of the screen this node should take up if propScale is
	// on
	propW, propH float64
	// The id is unique for each leaf node and provides a way to keep track of a split
	// The id cannot be 0
	id uint64
}

// NewNode returns a new node with the given specifications
func NewNode(Kind SplitType, x, y, w, h int, parent *Node, id uint64) *Node {
	n := new(Node)
	n.Kind = Kind
	n.canResize = true
	n.propScale = true
	n.X, n.Y, n.W, n.H = x, y, w, h
	n.children = make([]*Node, 0)
	n.parent = parent
	n.id = id
	if parent != nil {
		n.propW, n.propH = float64(w)/float64(parent.W), float64(h)/float64(parent.H)
	} else {
		n.propW, n.propH = 1, 1
	}

	return n
}

// NewRoot returns an empty Node with a size and location
// The type of the node will be determined by the first action on the node
// In other words, a lone split is neither horizontal nor vertical, it only
// becomes one or the other after a vsplit or hsplit is made
func NewRoot(x, y, w, h int) *Node {
	n1 := NewNode(STUndef, x, y, w, h, nil, NewID())

	return n1
}

// IsLeaf returns if this node is a leaf node
func (n *Node) IsLeaf() bool {
	return len(n.children) == 0
}

// ID returns this node's id or 0 if it is not viewable
func (n *Node) ID() uint64 {
	if n.IsLeaf() {
		return n.id
	}
	return 0
}

// CanResize returns if this node can be resized
func (n *Node) CanResize() bool {
	return n.canResize
}

// PropScale returns if this node is proportionally scaled
func (n *Node) PropScale() bool {
	return n.propScale
}

// SetResize sets the resize flag
func (n *Node) SetResize(b bool) {
	n.canResize = b
}

// SetPropScale sets the propScale flag
func (n *Node) SetPropScale(b bool) {
	n.propScale = b
}

// Children returns this node's children
func (n *Node) Children() []*Node {
	return n.children
}

// GetNode returns the node with the given id in the tree of children
// that this node has access to or nil if the node with that id cannot be found
func (n *Node) GetNode(id uint64) *Node {
	if n.id == id && n.IsLeaf() {
		return n
	}
	for _, c := range n.children {
		if c.id == id && c.IsLeaf() {
			return c
		}
		gc := c.GetNode(id)
		if gc != nil {
			return gc
		}
	}
	return nil
}

func (n *Node) vResizeSplit(i int, size int) bool {
	if i < 0 || i >= len(n.children) {
		return false
	}
	var c1, c2 *Node
	if i == len(n.children)-1 {
		c1, c2 = n.children[i-1], n.children[i]
	} else {
		c1, c2 = n.children[i], n.children[i+1]
	}
	toth := c1.H + c2.H
	if size >= toth {
		return false
	}
	c2.Y = c1.Y + size
	c1.Resize(c1.W, size)
	c2.Resize(c2.W, toth-size)
	n.markSizes()
	n.alignSizes(n.W, n.H)
	return true
}
func (n *Node) hResizeSplit(i int, size int) bool {
	if i < 0 || i >= len(n.children) {
		return false
	}
	var c1, c2 *Node
	if i == len(n.children)-1 {
		c1, c2 = n.children[i-1], n.children[i]
	} else {
		c1, c2 = n.children[i], n.children[i+1]
	}
	totw := c1.W + c2.W
	if size >= totw {
		return false
	}
	c2.X = c1.X + size
	c1.Resize(size, c1.H)
	c2.Resize(totw-size, c2.H)
	n.markSizes()
	n.alignSizes(n.W, n.H)
	return true
}

// ResizeSplit resizes a certain split to a given size
func (n *Node) ResizeSplit(size int) bool {
	// TODO: `size < 0` does not work for some reason
	if size <= 0 {
		return false
	}
	if len(n.parent.children) <= 1 {
		// cannot resize a lone node
		return false
	}
	ind := 0
	for i, c := range n.parent.children {
		if c.id == n.id {
			ind = i
		}
	}
	if n.parent.Kind == STVert {
		return n.parent.vResizeSplit(ind, size)
	}
	return n.parent.hResizeSplit(ind, size)
}

// Resize sets this node's size and resizes all children accordingly
func (n *Node) Resize(w, h int) {
	n.W, n.H = w, h

	if n.IsLeaf() {
		return
	}

	x, y := n.X, n.Y
	totw, toth := 0, 0
	for _, c := range n.children {
		cW := int(float64(w) * c.propW)
		cH := int(float64(h) * c.propH)

		c.X, c.Y = x, y
		c.Resize(cW, cH)
		if n.Kind == STHoriz {
			x += cW
			totw += cW
		} else {
			y += cH
			toth += cH
		}
	}

	n.alignSizes(totw, toth)
}

func (n *Node) alignSizes(totw, toth int) {
	// Make sure that there are no off-by-one problems with the rounding
	// of the sizes by making the final split fill the screen
	if n.Kind == STVert && toth != n.H {
		last := n.children[len(n.children)-1]
		last.Resize(last.W, last.H+n.H-toth)
	} else if n.Kind == STHoriz && totw != n.W {
		last := n.children[len(n.children)-1]
		last.Resize(last.W+n.W-totw, last.H)
	}
}

// Resets all proportions for children
func (n *Node) markSizes() {
	for _, c := range n.children {
		c.propW = float64(c.W) / float64(n.W)
		c.propH = float64(c.H) / float64(n.H)
		c.markSizes()
	}
}

func (n *Node) markResize() {
	n.markSizes()
	n.Resize(n.W, n.H)
}

// vsplits a vertical split and returns the id of the new split
func (n *Node) vVSplit(right bool) uint64 {
	ind := 0
	for i, c := range n.parent.children {
		if c.id == n.id {
			ind = i
		}
	}
	return n.parent.hVSplit(ind, right)
}

// hsplits a horizontal split
func (n *Node) hHSplit(bottom bool) uint64 {
	ind := 0
	for i, c := range n.parent.children {
		if c.id == n.id {
			ind = i
		}
	}
	return n.parent.vHSplit(ind, bottom)
}

// Returns the size of the non-resizable area and the number of resizable
// splits
func (n *Node) getResizeInfo(h bool) (int, int) {
	numr := 0
	numnr := 0
	nonr := 0
	for _, c := range n.children {
		if !c.CanResize() {
			if h {
				nonr += c.H
			} else {
				nonr += c.W
			}
			numnr++
		} else {
			numr++
		}
	}

	// if there are no resizable splits make them all resizable
	if numr == 0 {
		numr = numnr
	}

	return nonr, numr
}

func (n *Node) applyNewSize(size int, h bool) {
	a := n.X
	if h {
		a = n.Y
	}
	for _, c := range n.children {
		if h {
			c.Y = a
		} else {
			c.X = a
		}
		if c.CanResize() {
			if h {
				c.Resize(c.W, size)
			} else {
				c.Resize(size, c.H)
			}
		}
		if h {
			a += c.H
		} else {
			a += c.H
		}
	}
	n.markResize()
}

// hsplits a vertical split
func (n *Node) vHSplit(i int, right bool) uint64 {
	if n.IsLeaf() {
		newid := NewID()
		hn1 := NewNode(STHoriz, n.X, n.Y, n.W, n.H/2, n, n.id)
		hn2 := NewNode(STHoriz, n.X, n.Y+hn1.H, n.W, n.H/2, n, newid)
		if !right {
			hn1.id, hn2.id = hn2.id, hn1.id
		}

		n.children = append(n.children, hn1, hn2)
		n.markResize()
		return newid
	} else {
		nonrh, numr := n.getResizeInfo(true)

		// size of resizable area
		height := (n.H - nonrh) / (numr + 1)

		newid := NewID()
		hn := NewNode(STHoriz, n.X, 0, n.W, height, n, newid)

		// insert the node into the correct slot
		n.children = append(n.children, nil)
		inspos := i
		if right {
			inspos++
		}
		copy(n.children[inspos+1:], n.children[inspos:])
		n.children[inspos] = hn

		n.applyNewSize(height, true)
		return newid
	}
}

// vsplits a horizontal split
func (n *Node) hVSplit(i int, right bool) uint64 {
	if n.IsLeaf() {
		newid := NewID()
		vn1 := NewNode(STVert, n.X, n.Y, n.W/2, n.H, n, n.id)
		vn2 := NewNode(STVert, n.X+vn1.W, n.Y, n.W/2, n.H, n, newid)
		if !right {
			vn1.id, vn2.id = vn2.id, vn1.id
		}

		n.children = append(n.children, vn1, vn2)
		n.markResize()
		return newid
	} else {
		nonrw, numr := n.getResizeInfo(false)

		width := (n.W - nonrw) / (numr + 1)

		newid := NewID()
		vn := NewNode(STVert, 0, n.Y, width, n.H, n, newid)

		// Inser the node into the correct slot
		n.children = append(n.children, nil)
		inspos := i
		if right {
			inspos++
		}
		copy(n.children[inspos+1:], n.children[inspos:])
		n.children[inspos] = vn

		n.applyNewSize(width, false)
		return newid
	}
}

// HSplit creates a horizontal split and returns the id of the new split
// bottom specifies if the new split should be created on the top or bottom
// of the current split
func (n *Node) HSplit(bottom bool) uint64 {
	if !n.IsLeaf() {
		return 0
	}
	if n.Kind == STUndef {
		n.Kind = STVert
	}
	if n.Kind == STVert {
		return n.vHSplit(0, bottom)
	}
	return n.hHSplit(bottom)
}

// VSplit creates a vertical split and returns the id of the new split
// right specifies if the new split should be created on the right or left
// of the current split
func (n *Node) VSplit(right bool) uint64 {
	if !n.IsLeaf() {
		return 0
	}
	if n.Kind == STUndef {
		n.Kind = STHoriz
	}
	if n.Kind == STVert {
		return n.vVSplit(right)
	}
	return n.hVSplit(0, right)
}

// unsplits the child of a split
func (n *Node) unsplit(i int) {
	copy(n.children[i:], n.children[i+1:])
	n.children[len(n.children)-1] = nil
	n.children = n.children[:len(n.children)-1]

	h := n.Kind == STVert
	nonrs, numr := n.getResizeInfo(h)
	if numr == 0 {
		// This means that this was the last child
		// The parent will get cleaned up in the next iteration and
		// will resolve all sizing issues with its parent
		return
	}
	size := (n.W - nonrs) / numr
	if h {
		size = (n.H - nonrs) / numr
	}
	n.applyNewSize(size, h)
}

// Unsplit deletes this split and resizes everything
// else accordingly
func (n *Node) Unsplit() bool {
	if !n.IsLeaf() || n.parent == nil {
		return false
	}
	ind := 0
	for i, c := range n.parent.children {
		if c.id == n.id {
			ind = i
		}
	}
	n.parent.unsplit(ind)
	if n.parent.IsLeaf() {
		return n.parent.Unsplit()
	}

	n.parent.flatten()
	return true
}

// flattens the tree by removing unnecessary intermediate parents that have only one child
// and handles the side effect of it
func (n *Node) flatten() {
	if n.parent == nil || len(n.children) != 1 {
		return
	}

	ind := 0
	for i, c := range n.parent.children {
		if c.id == n.id {
			ind = i
		}
	}

	// Replace current node with its child node to remove chained parent
	successor := n.children[0]
	n.parent.children[ind] = successor
	successor.parent = n.parent

	// Maintain the tree in a consistent state: any child node's kind (horiz vs vert)
	// should be the opposite of its parent's kind.
	if successor.IsLeaf() {
		successor.Kind = n.Kind
	} else {
		// If the successor node has children, that means it is a chained parent as well.
		// Therefore it can be replaced by its own children.
		origsize := len(n.parent.children)

		// Let's say we have 5 children and want to replace [2] with its children [a] [b] [c]
		// [0] [1] [2] [3] [4] --> [0] [1] [a] [b] [c] [3] [4]
		// insertcount will be `3 - 1 = 2` in this case
		insertcount := len(successor.children) - 1

		n.parent.children = append(n.parent.children, make([]*Node, insertcount)...)
		copy(n.parent.children[ind+insertcount+1:], n.parent.children[ind+1:origsize])
		copy(n.parent.children[ind:], successor.children)

		for i := 0; i < len(successor.children); i++ {
			n.parent.children[ind+i].parent = n.parent
		}
	}

	// Update propW and propH since the parent of the children has been updated,
	// so the children have new siblings
	n.parent.markSizes()
}

// String returns the string form of the node and all children (used for debugging)
func (n *Node) String() string {
	var strf func(n *Node, ident int) string
	strf = func(n *Node, ident int) string {
		marker := "|"
		if n.Kind == STHoriz {
			marker = "-"
		}
		str := fmt.Sprint(strings.Repeat("\t", ident), marker, n.View, n.id)
		if n.IsLeaf() {
			str += "🍁"
		}
		str += "\n"
		for _, c := range n.children {
			str += strf(c, ident+1)
		}
		return str
	}
	return strf(n, 0)
}