1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
|
.. _zephyr_quickref:
Quick reference for the Zephyr port
===================================
Below is a quick reference for the Zephyr port. If it is your first time working with this port please consider reading the following sections first:
.. toctree::
:maxdepth: 1
general.rst
tutorial/index.rst
Running MicroPython
-------------------
See the corresponding section of the tutorial: :ref:`intro`.
Delay and timing
----------------
Use the :mod:`time <time>` module::
import time
time.sleep(1) # sleep for 1 second
time.sleep_ms(500) # sleep for 500 milliseconds
time.sleep_us(10) # sleep for 10 microseconds
start = time.ticks_ms() # get millisecond counter
delta = time.ticks_diff(time.ticks_ms(), start) # compute time difference
Pins and GPIO
-------------
Use the :ref:`machine.Pin <machine.Pin>` class::
from machine import Pin
pin = Pin(("gpiob", 21), Pin.IN) # create input pin on GPIO port B
print(pin) # print pin port and number
pin.init(Pin.OUT, Pin.PULL_UP, value=1) # reinitialize pin
pin.value(1) # set pin to high
pin.value(0) # set pin to low
pin.on() # set pin to high
pin.off() # set pin to low
pin = Pin(("gpiob", 21), Pin.IN) # create input pin on GPIO port B
pin = Pin(("gpiob", 21), Pin.OUT, value=1) # set pin high on creation
pin = Pin(("gpiob", 21), Pin.IN, Pin.PULL_UP) # enable internal pull-up resistor
switch = Pin(("gpioc", 6), Pin.IN) # create input pin for a switch
switch.irq(lambda t: print("SW2 changed")) # enable an interrupt when switch state is changed
Hardware I2C bus
----------------
Hardware I2C is accessed via the :ref:`machine.I2C <machine.I2C>` class::
from machine import I2C
i2c = I2C("i2c0") # construct an i2c bus
print(i2c) # print device name
i2c.scan() # scan the device for available I2C slaves
i2c.readfrom(0x1D, 4) # read 4 bytes from slave 0x1D
i2c.readfrom_mem(0x1D, 0x0D, 1) # read 1 byte from slave 0x1D at slave memory 0x0D
i2c.writeto(0x1D, b'abcd') # write to slave with address 0x1D
i2c.writeto_mem(0x1D, 0x0D, b'ab') # write to slave 0x1D at slave memory 0x0D
buf = bytearray(8) # create buffer of size 8
i2c.writeto(0x1D, b'abcd') # write buf to slave 0x1D
Hardware SPI bus
----------------
Hardware SPI is accessed via the :ref:`machine.SPI <machine.SPI>` class::
from machine import SPI
spi = SPI("spi0") # construct a spi bus with default configuration
spi.init(baudrate=100000, polarity=0, phase=0, bits=8, firstbit=SPI.MSB) # set configuration
# equivalently, construct spi bus and set configuration at the same time
spi = SPI("spi0", baudrate=100000, polarity=0, phase=0, bits=8, firstbit=SPI.MSB)
print(spi) # print device name and bus configuration
spi.read(4) # read 4 bytes on MISO
spi.read(4, write=0xF) # read 4 bytes while writing 0xF on MOSI
buf = bytearray(8) # create a buffer of size 8
spi.readinto(buf) # read into the buffer (reads number of bytes equal to the buffer size)
spi.readinto(buf, 0xF) # read into the buffer while writing 0xF on MOSI
spi.write(b'abcd') # write 4 bytes on MOSI
buf = bytearray(4) # create buffer of size 8
spi.write_readinto(b'abcd', buf) # write to MOSI and read from MISO into the buffer
spi.write_readinto(buf, buf) # write buf to MOSI and read back into the buf
Disk Access
-----------
Use the :ref:`zephyr.DiskAccess <zephyr.DiskAccess>` class to support filesystem::
import vfs
from zephyr import DiskAccess
block_dev = DiskAccess('SDHC') # create a block device object for an SD card
vfs.VfsFat.mkfs(block_dev) # create FAT filesystem object using the disk storage block
vfs.mount(block_dev, '/sd') # mount the filesystem at the SD card subdirectory
# with the filesystem mounted, files can be manipulated as normal
with open('/sd/hello.txt','w') as f: # open a new file in the directory
f.write('Hello world') # write to the file
print(open('/sd/hello.txt').read()) # print contents of the file
Flash Area
----------
Use the :ref:`zephyr.FlashArea <zephyr.FlashArea>` class to support filesystem::
import vfs
from zephyr import FlashArea
block_dev = FlashArea(4, 4096) # creates a block device object in the frdm-k64f flash scratch partition
vfs.VfsLfs2.mkfs(block_dev) # create filesystem in lfs2 format using the flash block device
vfs.mount(block_dev, '/flash') # mount the filesystem at the flash subdirectory
# with the filesystem mounted, files can be manipulated as normal
with open('/flash/hello.txt','w') as f: # open a new file in the directory
f.write('Hello world') # write to the file
print(open('/flash/hello.txt').read()) # print contents of the file
Sensor
------
Use the :ref:`zsensor.Sensor <zsensor.Sensor>` class to access sensor data::
import zsensor
from zsensor import Sensor
accel = Sensor("fxos8700") # create sensor object for the accelerometer
accel.measure() # obtain a measurement reading from the accelerometer
# each of these prints the value taken by measure()
accel.get_float(zsensor.ACCEL_X) # print measurement value for accelerometer X-axis sensor channel as float
accel.get_millis(zsensor.ACCEL_Y) # print measurement value for accelerometer Y-axis sensor channel in millionths
accel.get_micro(zsensor.ACCEL_Z) # print measurement value for accelerometer Z-axis sensor channel in thousandths
accel.get_int(zsensor.ACCEL_X) # print measurement integer value only for accelerometer X-axis sensor channel
|