1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
|
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2018-2019 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdio.h>
#include "py/mphal.h"
#include "py/runtime.h"
#include "nimble/ble.h"
#include "nimble/nimble_npl.h"
#include "extmod/nimble/hal/hal_uart.h"
#include "extmod/modbluetooth.h"
#include "extmod/nimble/modbluetooth_nimble.h"
#define DEBUG_OS_printf(...) // printf(__VA_ARGS__)
#define DEBUG_MALLOC_printf(...) // printf(__VA_ARGS__)
#define DEBUG_EVENT_printf(...) // printf(__VA_ARGS__)
#define DEBUG_MUTEX_printf(...) // printf(__VA_ARGS__)
#define DEBUG_SEM_printf(...) // printf(__VA_ARGS__)
#define DEBUG_CALLOUT_printf(...) // printf(__VA_ARGS__)
#define DEBUG_TIME_printf(...) // printf(__VA_ARGS__)
#define DEBUG_CRIT_printf(...) // printf(__VA_ARGS__)
bool ble_npl_os_started(void) {
DEBUG_OS_printf("ble_npl_os_started\n");
return true;
}
void *ble_npl_get_current_task_id(void) {
DEBUG_OS_printf("ble_npl_get_current_task_id\n");
return NULL;
}
/******************************************************************************/
// malloc
// Maintain a linked list of heap memory that we've passed to Nimble,
// discoverable via the bluetooth_nimble_memory root pointer.
typedef struct _mp_bluetooth_nimble_malloc_t {
struct _mp_bluetooth_nimble_malloc_t *prev;
struct _mp_bluetooth_nimble_malloc_t *next;
size_t size;
uint8_t data[];
} mp_bluetooth_nimble_malloc_t;
// TODO: This is duplicated from mbedtls. Perhaps make this a generic feature?
static void *m_malloc_bluetooth(size_t size) {
size += sizeof(mp_bluetooth_nimble_malloc_t);
mp_bluetooth_nimble_malloc_t *alloc = m_malloc0(size);
alloc->size = size;
alloc->next = MP_STATE_PORT(bluetooth_nimble_memory);
if (alloc->next) {
alloc->next->prev = alloc;
}
MP_STATE_PORT(bluetooth_nimble_memory) = alloc;
return alloc->data;
}
static mp_bluetooth_nimble_malloc_t* get_nimble_malloc(void *ptr) {
return (mp_bluetooth_nimble_malloc_t*)((uintptr_t)ptr - sizeof(mp_bluetooth_nimble_malloc_t));
}
static void m_free_bluetooth(void *ptr) {
mp_bluetooth_nimble_malloc_t *alloc = get_nimble_malloc(ptr);
if (alloc->next) {
alloc->next->prev = alloc->prev;
}
if (alloc->prev) {
alloc->prev->next = alloc->next;
} else {
MP_STATE_PORT(bluetooth_nimble_memory) = NULL;
}
m_free(alloc
#if MICROPY_MALLOC_USES_ALLOCATED_SIZE
, alloc->size
#endif
);
}
// Check if a nimble ptr is tracked.
// If it isn't, that means that it's from a previous soft-reset cycle.
static bool is_valid_nimble_malloc(void *ptr) {
DEBUG_MALLOC_printf("NIMBLE is_valid_nimble_malloc(%p)\n", ptr);
mp_bluetooth_nimble_malloc_t *alloc = MP_STATE_PORT(bluetooth_nimble_memory);
while (alloc) {
DEBUG_MALLOC_printf("NIMBLE checking: %p\n", alloc->data);
if (alloc->data == ptr) {
return true;
}
alloc = alloc->next;
}
return false;
}
void *nimble_malloc(size_t size) {
DEBUG_MALLOC_printf("NIMBLE malloc(%u)\n", (uint)size);
void* ptr = m_malloc_bluetooth(size);
DEBUG_MALLOC_printf(" --> %p\n", ptr);
return ptr;
}
// Only free if it's still a valid pointer.
void nimble_free(void *ptr) {
DEBUG_MALLOC_printf("NIMBLE free(%p)\n", ptr);
if (ptr) {
// After a stack re-init, NimBLE has variables in BSS that might be
// still pointing to old allocations from a previous init. We can't do
// anything about this (e.g. ble_gatts_free_mem is private). But we
// can identify that this is a non-null, invalid alloc because it
// won't be in our list, so ignore it because it is effectively free'd
// anyway (it's not referenced by anything the GC can find).
if (is_valid_nimble_malloc(ptr)) {
m_free_bluetooth(ptr);
}
}
}
// Only realloc if it's still a valid pointer. Otherwise just malloc.
void *nimble_realloc(void *ptr, size_t new_size) {
DEBUG_MALLOC_printf("NIMBLE realloc(%p, %u)\n", ptr, (uint)new_size);
if (!ptr) {
return nimble_malloc(new_size);
}
assert(is_valid_nimble_malloc(ptr));
// Existing alloc is big enough.
mp_bluetooth_nimble_malloc_t *alloc = get_nimble_malloc(ptr);
size_t old_size = alloc->size - sizeof(mp_bluetooth_nimble_malloc_t);
if (old_size >= new_size) {
return ptr;
}
// Allocate a new, larger region.
void *ptr2 = m_malloc_bluetooth(new_size);
// Copy old, smaller region into new region.
memcpy(ptr2, ptr, old_size);
m_free_bluetooth(ptr);
DEBUG_MALLOC_printf(" --> %p\n", ptr2);
return ptr2;
}
// No-op implementation (only used by NimBLE logging).
int nimble_sprintf(char *str, const char *fmt, ...) {
str[0] = 0;
return 0;
}
/******************************************************************************/
// EVENTQ
struct ble_npl_eventq *global_eventq = NULL;
// This must not be called recursively or concurrently with the UART handler.
void mp_bluetooth_nimble_os_eventq_run_all(void) {
if (mp_bluetooth_nimble_ble_state == MP_BLUETOOTH_NIMBLE_BLE_STATE_OFF) {
return;
}
// Keep running while there are pending events.
while (true) {
struct ble_npl_event *ev = NULL;
os_sr_t sr;
OS_ENTER_CRITICAL(sr);
// Search all queues for an event.
for (struct ble_npl_eventq *evq = global_eventq; evq != NULL; evq = evq->nextq) {
ev = evq->head;
if (ev) {
// Remove this event from the queue.
evq->head = ev->next;
if (ev->next) {
ev->next->prev = NULL;
ev->next = NULL;
}
ev->prev = NULL;
ev->pending = false;
// Stop searching and execute this event.
break;
}
}
OS_EXIT_CRITICAL(sr);
if (!ev) {
break;
}
// Run the event handler.
DEBUG_EVENT_printf("event_run(%p)\n", ev);
ev->fn(ev);
DEBUG_EVENT_printf("event_run(%p) done\n", ev);
if (ev->pending) {
// If this event has been re-enqueued while it was running, then
// stop running further events. This prevents an infinite loop
// where the reset event re-enqueues itself on HCI timeout.
break;
}
}
}
void ble_npl_eventq_init(struct ble_npl_eventq *evq) {
DEBUG_EVENT_printf("ble_npl_eventq_init(%p)\n", evq);
os_sr_t sr;
OS_ENTER_CRITICAL(sr);
evq->head = NULL;
struct ble_npl_eventq **evq2;
for (evq2 = &global_eventq; *evq2 != NULL; evq2 = &(*evq2)->nextq) {
}
*evq2 = evq;
evq->nextq = NULL;
OS_EXIT_CRITICAL(sr);
}
void ble_npl_eventq_put(struct ble_npl_eventq *evq, struct ble_npl_event *ev) {
DEBUG_EVENT_printf("ble_npl_eventq_put(%p, %p (%p, %p))\n", evq, ev, ev->fn, ev->arg);
os_sr_t sr;
OS_ENTER_CRITICAL(sr);
ev->next = NULL;
ev->pending = true;
if (evq->head == NULL) {
// Empty list, make this the first item.
evq->head = ev;
ev->prev = NULL;
} else {
// Find the tail of this list.
struct ble_npl_event *tail = evq->head;
while (true) {
if (tail == ev) {
DEBUG_EVENT_printf(" --> already in queue\n");
// Already in the list (e.g. a fragmented ACL will enqueue an
// event to process it for each fragment).
break;
}
if (tail->next == NULL) {
// Found the end of the list, add this event as the tail.
tail->next = ev;
ev->prev = tail;
break;
}
DEBUG_EVENT_printf(" --> %p\n", tail->next);
tail = tail->next;
}
}
OS_EXIT_CRITICAL(sr);
}
void ble_npl_event_init(struct ble_npl_event *ev, ble_npl_event_fn *fn, void *arg) {
DEBUG_EVENT_printf("ble_npl_event_init(%p, %p, %p)\n", ev, fn, arg);
ev->fn = fn;
ev->arg = arg;
ev->next = NULL;
ev->pending = false;
}
void *ble_npl_event_get_arg(struct ble_npl_event *ev) {
DEBUG_EVENT_printf("ble_npl_event_get_arg(%p) -> %p\n", ev, ev->arg);
return ev->arg;
}
void ble_npl_event_set_arg(struct ble_npl_event *ev, void *arg) {
DEBUG_EVENT_printf("ble_npl_event_set_arg(%p, %p)\n", ev, arg);
ev->arg = arg;
}
/******************************************************************************/
// MUTEX
ble_npl_error_t ble_npl_mutex_init(struct ble_npl_mutex *mu) {
DEBUG_MUTEX_printf("ble_npl_mutex_init(%p)\n", mu);
mu->locked = 0;
return BLE_NPL_OK;
}
ble_npl_error_t ble_npl_mutex_pend(struct ble_npl_mutex *mu, ble_npl_time_t timeout) {
DEBUG_MUTEX_printf("ble_npl_mutex_pend(%p, %u) locked=%u\n", mu, (uint)timeout, (uint)mu->locked);
// All NimBLE code is executed by the scheduler (and is therefore
// implicitly mutexed) so this mutex implementation is a no-op.
++mu->locked;
return BLE_NPL_OK;
}
ble_npl_error_t ble_npl_mutex_release(struct ble_npl_mutex *mu) {
DEBUG_MUTEX_printf("ble_npl_mutex_release(%p) locked=%u\n", mu, (uint)mu->locked);
assert(mu->locked > 0);
--mu->locked;
return BLE_NPL_OK;
}
/******************************************************************************/
// SEM
ble_npl_error_t ble_npl_sem_init(struct ble_npl_sem *sem, uint16_t tokens) {
DEBUG_SEM_printf("ble_npl_sem_init(%p, %u)\n", sem, (uint)tokens);
sem->count = tokens;
return BLE_NPL_OK;
}
ble_npl_error_t ble_npl_sem_pend(struct ble_npl_sem *sem, ble_npl_time_t timeout) {
DEBUG_SEM_printf("ble_npl_sem_pend(%p, %u) count=%u\n", sem, (uint)timeout, (uint)sem->count);
// This is only called by NimBLE in ble_hs_hci_cmd_tx to synchronously
// wait for an HCI ACK. The corresponding ble_npl_sem_release is called
// directly by the UART rx handler (i.e. hal_uart_rx_cb in
// extmod/nimble/hal/hal_uart.c). So this loop needs to run only the HCI
// UART processing but not run any events.
if (sem->count == 0) {
uint32_t t0 = mp_hal_ticks_ms();
while (sem->count == 0 && mp_hal_ticks_ms() - t0 < timeout) {
if (sem->count != 0) {
break;
}
mp_bluetooth_nimble_hci_uart_wfi();
}
if (sem->count == 0) {
DEBUG_SEM_printf("ble_npl_sem_pend: semaphore timeout\n");
return BLE_NPL_TIMEOUT;
}
DEBUG_SEM_printf("ble_npl_sem_pend: acquired in %u ms\n", (int)(mp_hal_ticks_ms() - t0));
}
sem->count -= 1;
return BLE_NPL_OK;
}
ble_npl_error_t ble_npl_sem_release(struct ble_npl_sem *sem) {
DEBUG_SEM_printf("ble_npl_sem_release(%p)\n", sem);
sem->count += 1;
return BLE_NPL_OK;
}
uint16_t ble_npl_sem_get_count(struct ble_npl_sem *sem) {
DEBUG_SEM_printf("ble_npl_sem_get_count(%p)\n", sem);
return sem->count;
}
/******************************************************************************/
// CALLOUT
static struct ble_npl_callout *global_callout = NULL;
void mp_bluetooth_nimble_os_callout_process(void) {
os_sr_t sr;
OS_ENTER_CRITICAL(sr);
uint32_t tnow = mp_hal_ticks_ms();
for (struct ble_npl_callout *c = global_callout; c != NULL; c = c->nextc) {
if (!c->active) {
continue;
}
if ((int32_t)(tnow - c->ticks) >= 0) {
DEBUG_CALLOUT_printf("callout_run(%p) tnow=%u ticks=%u evq=%p\n", c, (uint)tnow, (uint)c->ticks, c->evq);
c->active = false;
if (c->evq) {
// Enqueue this callout for execution in the event queue.
ble_npl_eventq_put(c->evq, &c->ev);
} else {
// Execute this callout directly.
OS_EXIT_CRITICAL(sr);
c->ev.fn(&c->ev);
OS_ENTER_CRITICAL(sr);
}
DEBUG_CALLOUT_printf("callout_run(%p) done\n", c);
}
}
OS_EXIT_CRITICAL(sr);
}
void ble_npl_callout_init(struct ble_npl_callout *c, struct ble_npl_eventq *evq, ble_npl_event_fn *ev_cb, void *ev_arg) {
DEBUG_CALLOUT_printf("ble_npl_callout_init(%p, %p, %p, %p)\n", c, evq, ev_cb, ev_arg);
os_sr_t sr;
OS_ENTER_CRITICAL(sr);
c->active = false;
c->ticks = 0;
c->evq = evq;
ble_npl_event_init(&c->ev, ev_cb, ev_arg);
struct ble_npl_callout **c2;
for (c2 = &global_callout; *c2 != NULL; c2 = &(*c2)->nextc) {
if (c == *c2) {
// callout already in linked list so don't link it in again
OS_EXIT_CRITICAL(sr);
return;
}
}
*c2 = c;
c->nextc = NULL;
OS_EXIT_CRITICAL(sr);
}
ble_npl_error_t ble_npl_callout_reset(struct ble_npl_callout *c, ble_npl_time_t ticks) {
DEBUG_CALLOUT_printf("ble_npl_callout_reset(%p, %u) tnow=%u\n", c, (uint)ticks, (uint)mp_hal_ticks_ms());
os_sr_t sr;
OS_ENTER_CRITICAL(sr);
c->active = true;
c->ticks = ble_npl_time_get() + ticks;
OS_EXIT_CRITICAL(sr);
return BLE_NPL_OK;
}
void ble_npl_callout_stop(struct ble_npl_callout *c) {
DEBUG_CALLOUT_printf("ble_npl_callout_stop(%p)\n", c);
c->active = false;
}
bool ble_npl_callout_is_active(struct ble_npl_callout *c) {
DEBUG_CALLOUT_printf("ble_npl_callout_is_active(%p)\n", c);
return c->active;
}
ble_npl_time_t ble_npl_callout_get_ticks(struct ble_npl_callout *c) {
DEBUG_CALLOUT_printf("ble_npl_callout_get_ticks(%p)\n", c);
return c->ticks;
}
ble_npl_time_t ble_npl_callout_remaining_ticks(struct ble_npl_callout *c, ble_npl_time_t now) {
DEBUG_CALLOUT_printf("ble_npl_callout_remaining_ticks(%p, %u)\n", c, (uint)now);
if (c->ticks > now) {
return c->ticks - now;
} else {
return 0;
}
}
void *ble_npl_callout_get_arg(struct ble_npl_callout *c) {
DEBUG_CALLOUT_printf("ble_npl_callout_get_arg(%p)\n", c);
return ble_npl_event_get_arg(&c->ev);
}
void ble_npl_callout_set_arg(struct ble_npl_callout *c, void *arg) {
DEBUG_CALLOUT_printf("ble_npl_callout_set_arg(%p, %p)\n", c, arg);
ble_npl_event_set_arg(&c->ev, arg);
}
/******************************************************************************/
// TIME
uint32_t ble_npl_time_get(void) {
DEBUG_TIME_printf("ble_npl_time_get -> %u\n", (uint)mp_hal_ticks_ms());
return mp_hal_ticks_ms();
}
ble_npl_error_t ble_npl_time_ms_to_ticks(uint32_t ms, ble_npl_time_t *out_ticks) {
DEBUG_TIME_printf("ble_npl_time_ms_to_ticks(%u)\n", (uint)ms);
*out_ticks = ms;
return BLE_NPL_OK;
}
ble_npl_time_t ble_npl_time_ms_to_ticks32(uint32_t ms) {
DEBUG_TIME_printf("ble_npl_time_ms_to_ticks32(%u)\n", (uint)ms);
return ms;
}
uint32_t ble_npl_time_ticks_to_ms32(ble_npl_time_t ticks) {
DEBUG_TIME_printf("ble_npl_time_ticks_to_ms32(%u)\n", (uint)ticks);
return ticks;
}
void ble_npl_time_delay(ble_npl_time_t ticks) {
mp_hal_delay_ms(ticks + 1);
}
/******************************************************************************/
// CRITICAL
// This is used anywhere NimBLE modifies global data structures.
// Currently all NimBLE code is invoked by the scheduler so there should be no
// races, so on STM32 MICROPY_PY_BLUETOOTH_ENTER/MICROPY_PY_BLUETOOTH_EXIT are
// no-ops. However, in the future we may wish to make HCI UART processing
// happen asynchronously (e.g. on RX IRQ), so the port can implement these
// macros accordingly.
uint32_t ble_npl_hw_enter_critical(void) {
DEBUG_CRIT_printf("ble_npl_hw_enter_critical()\n");
MICROPY_PY_BLUETOOTH_ENTER
return atomic_state;
}
void ble_npl_hw_exit_critical(uint32_t atomic_state) {
MICROPY_PY_BLUETOOTH_EXIT
DEBUG_CRIT_printf("ble_npl_hw_exit_critical(%u)\n", (uint)atomic_state);
}
|