1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
|
/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2024 OpenMV LLC.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "irq.h"
#include "system_tick.h"
#define MIN(x, y) ((x) < (y) ? (x) : (y))
#if MICROPY_HW_SYSTEM_TICK_USE_SYSTICK
#include "shared/runtime/softtimer.h"
#include "pendsv.h"
volatile uint32_t system_tick_ms_counter;
void system_tick_init(void) {
// Configure SysTick to run at 1kHz (1ms interval)
SysTick_Config(SystemCoreClock / 1000);
NVIC_SetPriority(SysTick_IRQn, IRQ_PRI_SYSTEM_TICK);
NVIC_EnableIRQ(SysTick_IRQn);
}
void SysTick_Handler(void) {
uint32_t uw_tick = system_tick_ms_counter + 1;
system_tick_ms_counter = uw_tick;
// Read the systick control register to clear the COUNTFLAG bit.
SysTick->CTRL;
if (soft_timer_next == uw_tick) {
pendsv_schedule_dispatch(PENDSV_DISPATCH_SOFT_TIMER, soft_timer_handler);
}
}
uint32_t system_tick_get_u32(void) {
return system_tick_get_u64();
}
uint64_t system_tick_get_u64(void) {
mp_uint_t irq_state = disable_irq();
uint32_t counter = SysTick->VAL;
uint32_t milliseconds = system_tick_ms_counter;
uint32_t status = SysTick->CTRL;
enable_irq(irq_state);
// It's still possible for the COUNTFLAG bit to get set if the counter was
// reloaded between reading VAL and reading CTRL. With interrupts disabled
// it definitely takes less than 50 cycles between reading VAL and
// reading CTRL, so the test (counter > 50) is to cover the case where VAL
// is +ve and very close to zero, and the COUNTFLAG bit is also set.
if ((status & SysTick_CTRL_COUNTFLAG_Msk) && counter > 50) {
// This means that the HW reloaded VAL between the time we read VAL and the
// time we read CTRL, which implies that there is an interrupt pending
// to increment the tick counter.
milliseconds++;
}
uint32_t load = SysTick->LOAD;
counter = load - counter; // Convert from decrementing to incrementing
// Calculate 64-bit microsecond counter.
return (uint64_t)milliseconds * 1000ULL + (uint64_t)((counter * 1000) / (load + 1));
}
void system_tick_wfe_with_timeout_us(uint32_t timeout_us) {
if (timeout_us > 1000) {
// SysTick will wake us in at most 1ms.
__WFI();
}
}
#elif MICROPY_HW_SYSTEM_TICK_USE_LPTIMER
#include "lptimer.h"
#include "sys_ctrl_lptimer.h"
// Channel 0 and 1 are cascaded to make a 64-bit counter.
// Channel 2 is used for system_tick_wfe_with_timeout_us.
// Channel 3 is used for system_tick_schedule_after_us.
#define LPTIMER ((LPTIMER_Type *)LPTIMER_BASE)
#define LPTIMER_CH_A (0)
#define LPTIMER_CH_B (1)
#define LPTIMER_CH_C (2)
#define LPTIMER_CH_D (3)
uint64_t system_tick_source_hz;
void system_tick_init(void) {
lptimer_disable_counter(LPTIMER, LPTIMER_CH_A);
lptimer_disable_counter(LPTIMER, LPTIMER_CH_B);
ANA_REG->MISC_CTRL |= 1 << 0; // SEL_32K, select LXFO
select_lptimer_clk(LPTIMER_CLK_SOURCE_32K, LPTIMER_CH_A);
select_lptimer_clk(LPTIMER_CLK_SOURCE_CASCADE, LPTIMER_CH_B);
select_lptimer_clk(LPTIMER_CLK_SOURCE_32K, LPTIMER_CH_C);
select_lptimer_clk(LPTIMER_CLK_SOURCE_32K, LPTIMER_CH_D);
lptimer_load_max_count(LPTIMER, LPTIMER_CH_A);
lptimer_set_mode_freerunning(LPTIMER, LPTIMER_CH_A);
lptimer_load_max_count(LPTIMER, LPTIMER_CH_B);
lptimer_set_mode_freerunning(LPTIMER, LPTIMER_CH_B);
lptimer_enable_counter(LPTIMER, LPTIMER_CH_B);
lptimer_enable_counter(LPTIMER, LPTIMER_CH_A);
system_tick_source_hz = 32768;
NVIC_ClearPendingIRQ(LPTIMER2_IRQ_IRQn);
NVIC_SetPriority(LPTIMER2_IRQ_IRQn, IRQ_PRI_SYSTEM_TICK);
NVIC_EnableIRQ(LPTIMER2_IRQ_IRQn);
NVIC_ClearPendingIRQ(LPTIMER3_IRQ_IRQn);
NVIC_SetPriority(LPTIMER3_IRQ_IRQn, IRQ_PRI_SYSTEM_TICK);
NVIC_EnableIRQ(LPTIMER3_IRQ_IRQn);
}
void LPTIMER2_IRQHandler(void) {
lptimer_clear_interrupt(LPTIMER, LPTIMER_CH_C);
__SEV();
}
void LPTIMER3_IRQHandler(void) {
lptimer_clear_interrupt(LPTIMER, LPTIMER_CH_D);
lptimer_mask_interrupt(LPTIMER, LPTIMER_CH_D);
lptimer_disable_counter(LPTIMER, LPTIMER_CH_D);
system_tick_schedule_callback();
__SEV();
}
uint32_t system_tick_get_u32(void) {
return 0xffffffff - lptimer_get_count(LPTIMER, LPTIMER_CH_A);
}
uint64_t system_tick_get_u64(void) {
// Get 64-bit counter value from the hardware timer.
// Sample it twice in case the low counter wraps around while sampling.
uint32_t irq_state = disable_irq();
uint32_t lo0 = lptimer_get_count(LPTIMER, LPTIMER_CH_A);
uint32_t hi0 = lptimer_get_count(LPTIMER, LPTIMER_CH_B);
uint32_t lo1 = lptimer_get_count(LPTIMER, LPTIMER_CH_A);
uint32_t hi1 = lptimer_get_count(LPTIMER, LPTIMER_CH_B);
enable_irq(irq_state);
if (hi0 == hi1) {
// Low counter may have wrapped around between sampling of lo0 and hi0, so prefer second sampling.
lo0 = lo1;
hi0 = hi1;
} else {
// Low counter wrapped around either between sampling of hi0 and lo1, or sampling of lo1 and hi1.
// In either case use the first sampling.
}
// Convert from descending count to ascending.
lo0 = 0xffffffff - lo0;
hi0 = 0xffffffff - hi0;
// Return a 64-bit value.
return ((uint64_t)hi0 << 32) | (uint64_t)lo0;
}
void system_tick_wfe_with_timeout_us(uint32_t timeout_us) {
// Maximum 131 second timeout, to not overflow 32-bit ticks when
// LPTIMER is clocked at 32768Hz.
uint32_t timeout_ticks = (uint64_t)MIN(timeout_us, 131000000) * system_tick_source_hz / 1000000;
// Set up the LPTIMER interrupt to fire after the given timeout.
lptimer_disable_counter(LPTIMER, LPTIMER_CH_C);
lptimer_set_mode_userdefined(LPTIMER, LPTIMER_CH_C);
lptimer_load_count(LPTIMER, LPTIMER_CH_C, &timeout_ticks);
lptimer_clear_interrupt(LPTIMER, LPTIMER_CH_C);
lptimer_unmask_interrupt(LPTIMER, LPTIMER_CH_C);
lptimer_enable_counter(LPTIMER, LPTIMER_CH_C);
// Wait for an event.
__WFE();
// Disable the LPTIMER interrupt (in case a different interrupt woke the WFE).
lptimer_mask_interrupt(LPTIMER, LPTIMER_CH_C);
lptimer_disable_counter(LPTIMER, LPTIMER_CH_C);
}
void system_tick_schedule_after_us(uint32_t ticks_us) {
// Disable the interrupt in case it's still active.
lptimer_mask_interrupt(LPTIMER, LPTIMER_CH_D);
// Maximum 131 second timeout, to not overflow 32-bit ticks when
// LPTIMER is clocked at 32768Hz.
uint32_t timeout_ticks = (uint64_t)MIN(ticks_us, 131000000) * system_tick_source_hz / 1000000;
// Set up the LPTIMER interrupt to fire after the given timeout.
lptimer_disable_counter(LPTIMER, LPTIMER_CH_D);
lptimer_set_mode_userdefined(LPTIMER, LPTIMER_CH_D);
lptimer_load_count(LPTIMER, LPTIMER_CH_D, &timeout_ticks);
lptimer_clear_interrupt(LPTIMER, LPTIMER_CH_D);
lptimer_unmask_interrupt(LPTIMER, LPTIMER_CH_D);
lptimer_enable_counter(LPTIMER, LPTIMER_CH_D);
}
#elif MICROPY_HW_SYSTEM_TICK_USE_UTIMER
#include "utimer.h"
#define UTIMER ((UTIMER_Type *)UTIMER_BASE)
#define UTIMER_CHANNEL (11)
uint64_t system_core_clock_mhz;
static volatile uint32_t system_tick_hi;
static void system_tick_nvic_config(unsigned int index) {
NVIC_ClearPendingIRQ(UTIMER_IRQ0_IRQn + UTIMER_CHANNEL * 8 + index);
NVIC_SetPriority(UTIMER_IRQ0_IRQn + UTIMER_CHANNEL * 8 + index, IRQ_PRI_SYSTEM_TICK);
NVIC_EnableIRQ(UTIMER_IRQ0_IRQn + UTIMER_CHANNEL * 8 + index);
}
void system_tick_init(void) {
system_tick_hi = 0;
system_core_clock_mhz = SystemCoreClock / 1000000;
// Configure NVIC OVER_FLOW interrupt.
system_tick_nvic_config(7);
utimer_clock_enable(UTIMER, UTIMER_CHANNEL);
utimer_channel_config cfg = { 0 };
cfg.fixed_buffer = false;
utimer_config_direction(UTIMER, UTIMER_CHANNEL, UTIMER_COUNTER_UP, &cfg);
utimer_set_count(UTIMER, UTIMER_CHANNEL, UTIMER_CNTR_PTR, 0xffffffff);
utimer_unmask_interrupt(UTIMER, UTIMER_CHANNEL, CHAN_INTERRUPT_OVER_FLOW_MASK);
utimer_control_enable(UTIMER, UTIMER_CHANNEL);
utimer_counter_start(UTIMER, UTIMER_CHANNEL);
// Set up the UTIMER compare A interrupt, to be used by system_tick_wfe_with_timeout_us.
system_tick_nvic_config(2);
UTIMER->UTIMER_CHANNEL_CFG[UTIMER_CHANNEL].UTIMER_COMPARE_CTRL_A |= COMPARE_CTRL_DRV_COMPARE_EN;
// Set up the UTIMER compare B interrupt, to be used by soft-timer.
system_tick_nvic_config(4);
UTIMER->UTIMER_CHANNEL_CFG[UTIMER_CHANNEL].UTIMER_COMPARE_CTRL_B |= COMPARE_CTRL_DRV_COMPARE_EN;
}
// COMPARE_A_BUF1
void UTIMER_IRQ90Handler(void) {
uint32_t chan_interrupt = UTIMER->UTIMER_CHANNEL_CFG[UTIMER_CHANNEL].UTIMER_CHAN_INTERRUPT;
if (chan_interrupt & CHAN_INTERRUPT_COMPARE_A_BUF1_MASK) {
utimer_clear_interrupt(UTIMER, UTIMER_CHANNEL, CHAN_INTERRUPT_COMPARE_A_BUF1_MASK);
__SEV();
}
}
// COMPARE_B_BUF1
void UTIMER_IRQ92Handler(void) {
uint32_t chan_interrupt = UTIMER->UTIMER_CHANNEL_CFG[UTIMER_CHANNEL].UTIMER_CHAN_INTERRUPT;
if (chan_interrupt & CHAN_INTERRUPT_COMPARE_B_BUF1_MASK) {
utimer_clear_interrupt(UTIMER, UTIMER_CHANNEL, CHAN_INTERRUPT_COMPARE_B_BUF1_MASK);
utimer_mask_interrupt(UTIMER, UTIMER_CHANNEL, CHAN_INTERRUPT_COMPARE_B_BUF1_MASK);
system_tick_schedule_callback();
__SEV();
}
}
// OVER_FLOW
void UTIMER_IRQ95Handler(void) {
uint32_t chan_interrupt = UTIMER->UTIMER_CHANNEL_CFG[UTIMER_CHANNEL].UTIMER_CHAN_INTERRUPT;
if (chan_interrupt & CHAN_INTERRUPT_OVER_FLOW_MASK) {
utimer_clear_interrupt(UTIMER, UTIMER_CHANNEL, CHAN_INTERRUPT_OVER_FLOW_MASK);
++system_tick_hi;
}
}
uint32_t system_tick_get_u32(void) {
return utimer_get_count(UTIMER, UTIMER_CHANNEL, UTIMER_CNTR);
}
uint64_t system_tick_get_u64(void) {
uint32_t irq_state = disable_irq();
uint32_t ticks_lo = utimer_get_count(UTIMER, UTIMER_CHANNEL, UTIMER_CNTR);
uint32_t ticks_hi = system_tick_hi;
uint32_t chan_interrupt = UTIMER->UTIMER_CHANNEL_CFG[UTIMER_CHANNEL].UTIMER_CHAN_INTERRUPT;
enable_irq(irq_state);
if (chan_interrupt & CHAN_INTERRUPT_OVER_FLOW_MASK) {
// The timer had an overflow while interrupts were disabled.
if (ticks_lo < 0x80000000) {
// The timer had an overflow just before we sampled it.
++ticks_hi;
}
}
// This ticks runs at SystemCoreClock.
return (uint64_t)ticks_hi << 32 | ticks_lo;
}
void system_tick_wfe_with_timeout_us(uint32_t timeout_us) {
// Maximum 10 second timeout, to not overflow 32-bit ticks when
// system_core_clock_mhz==400.
uint32_t timeout_ticks = MIN(timeout_us, 10000000) * system_core_clock_mhz;
// Set up the UTIMER compare interrupt to fire after the given timeout.
uint32_t cntr = utimer_get_count(UTIMER, UTIMER_CHANNEL, UTIMER_CNTR);
utimer_set_count(UTIMER, UTIMER_CHANNEL, UTIMER_COMPARE_A_BUF1, cntr + timeout_ticks);
utimer_clear_interrupt(UTIMER, UTIMER_CHANNEL, CHAN_INTERRUPT_COMPARE_A_BUF1_MASK);
utimer_unmask_interrupt(UTIMER, UTIMER_CHANNEL, CHAN_INTERRUPT_COMPARE_A_BUF1_MASK);
// Wait for an event (or compare timeout event) if the timeout hasn't expired yet
// (this check handles the case of short timeouts).
uint32_t cntr2 = utimer_get_count(UTIMER, UTIMER_CHANNEL, UTIMER_CNTR);
if ((uint32_t)(cntr2 - cntr) < timeout_ticks) {
__WFE();
}
// Disable the UTIMER compare interrupt.
utimer_mask_interrupt(UTIMER, UTIMER_CHANNEL, CHAN_INTERRUPT_COMPARE_A_BUF1_MASK);
}
void system_tick_schedule_after_us(uint32_t ticks_us) {
// Disable the interrupt in case it's still active.
utimer_mask_interrupt(UTIMER, UTIMER_CHANNEL, CHAN_INTERRUPT_COMPARE_B_BUF1_MASK);
// Maximum 10 second timeout, to not overflow 32-bit ticks when
// system_core_clock_mhz==400.
uint32_t timeout_ticks = MIN(ticks_us, 10000000) * system_core_clock_mhz;
// Set up the UTIMER compare interrupt to fire after the given timeout.
uint32_t cntr = utimer_get_count(UTIMER, UTIMER_CHANNEL, UTIMER_CNTR);
utimer_set_count(UTIMER, UTIMER_CHANNEL, UTIMER_COMPARE_B_BUF1, cntr + timeout_ticks);
utimer_clear_interrupt(UTIMER, UTIMER_CHANNEL, CHAN_INTERRUPT_COMPARE_B_BUF1_MASK);
utimer_unmask_interrupt(UTIMER, UTIMER_CHANNEL, CHAN_INTERRUPT_COMPARE_B_BUF1_MASK);
// Handle the case of short timeouts.
uint32_t cntr2 = utimer_get_count(UTIMER, UTIMER_CHANNEL, UTIMER_CNTR);
if ((uint32_t)(cntr2 - cntr) >= timeout_ticks) {
if (!(UTIMER->UTIMER_CHANNEL_CFG[UTIMER_CHANNEL].UTIMER_CHAN_INTERRUPT_MASK & CHAN_INTERRUPT_COMPARE_B_BUF1_MASK)) {
// Interrupt is still enabled, so disable it and manually call the callback.
utimer_mask_interrupt(UTIMER, UTIMER_CHANNEL, CHAN_INTERRUPT_COMPARE_B_BUF1_MASK);
system_tick_schedule_callback();
}
}
}
#endif
|