1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
|
from __future__ import print_function
import collections
import re
import sys
import gzip
import zlib
_COMPRESSED_MARKER = 0xFF
def check_non_ascii(msg):
for c in msg:
if ord(c) >= 0x80:
print(
'Unable to generate compressed data: message "{}" contains a non-ascii character "{}".'.format(
msg, c
),
file=sys.stderr,
)
sys.exit(1)
# Replace <char><space> with <char | 0x80>.
# Trivial scheme to demo/test.
def space_compression(error_strings):
for line in error_strings:
check_non_ascii(line)
result = ""
for i in range(len(line)):
if i > 0 and line[i] == " ":
result = result[:-1]
result += "\\{:03o}".format(ord(line[i - 1]))
else:
result += line[i]
error_strings[line] = result
return None
# Replace common words with <0x80 | index>.
# Index is into a table of words stored as aaaaa<0x80|a>bbb<0x80|b>...
# Replaced words are assumed to have spaces either side to avoid having to store the spaces in the compressed strings.
def word_compression(error_strings):
topn = collections.Counter()
for line in error_strings.keys():
check_non_ascii(line)
for word in line.split(" "):
topn[word] += 1
# Order not just by frequency, but by expected saving. i.e. prefer a longer string that is used less frequently.
# Use the word itself for ties so that compression is deterministic.
def bytes_saved(item):
w, n = item
return -((len(w) + 1) * (n - 1)), w
top128 = sorted(topn.items(), key=bytes_saved)[:128]
index = [w for w, _ in top128]
index_lookup = {w: i for i, w in enumerate(index)}
for line in error_strings.keys():
result = ""
need_space = False
for word in line.split(" "):
if word in index_lookup:
result += "\\{:03o}".format(0b10000000 | index_lookup[word])
need_space = False
else:
if need_space:
result += " "
need_space = True
result += word
error_strings[line] = result.strip()
return "".join(w[:-1] + "\\{:03o}".format(0b10000000 | ord(w[-1])) for w in index)
# Replace chars in text with variable length bit sequence.
# For comparison only (the table is not emitted).
def huffman_compression(error_strings):
# https://github.com/tannewt/huffman
import huffman
all_strings = "".join(error_strings)
cb = huffman.codebook(collections.Counter(all_strings).items())
for line in error_strings:
b = "1"
for c in line:
b += cb[c]
n = len(b)
if n % 8 != 0:
n += 8 - (n % 8)
result = ""
for i in range(0, n, 8):
result += "\\{:03o}".format(int(b[i : i + 8], 2))
if len(result) > len(line) * 4:
result = line
error_strings[line] = result
# TODO: This would be the prefix lengths and the table ordering.
return "_" * (10 + len(cb))
# Replace common N-letter sequences with <0x80 | index>, where
# the common sequences are stored in a separate table.
# This isn't very useful, need a smarter way to find top-ngrams.
def ngram_compression(error_strings):
topn = collections.Counter()
N = 2
for line in error_strings.keys():
check_non_ascii(line)
if len(line) < N:
continue
for i in range(0, len(line) - N, N):
topn[line[i : i + N]] += 1
def bytes_saved(item):
w, n = item
return -(len(w) * (n - 1))
top128 = sorted(topn.items(), key=bytes_saved)[:128]
index = [w for w, _ in top128]
index_lookup = {w: i for i, w in enumerate(index)}
for line in error_strings.keys():
result = ""
for i in range(0, len(line) - N + 1, N):
word = line[i : i + N]
if word in index_lookup:
result += "\\{:03o}".format(0b10000000 | index_lookup[word])
else:
result += word
if len(line) % N != 0:
result += line[len(line) - len(line) % N :]
error_strings[line] = result.strip()
return "".join(index)
def main(collected_path, fn):
error_strings = collections.OrderedDict()
max_uncompressed_len = 0
num_uses = 0
# Read in all MP_ERROR_TEXT strings.
with open(collected_path, "r") as f:
for line in f:
line = line.strip()
if not line:
continue
num_uses += 1
error_strings[line] = None
max_uncompressed_len = max(max_uncompressed_len, len(line))
# So that objexcept.c can figure out how big the buffer needs to be.
print("#define MP_MAX_UNCOMPRESSED_TEXT_LEN ({})".format(max_uncompressed_len))
# Run the compression.
compressed_data = fn(error_strings)
# Print the data table.
print('MP_COMPRESSED_DATA("{}")'.format(compressed_data))
# Print the replacements.
for uncomp, comp in error_strings.items():
if uncomp == comp:
prefix = ""
else:
prefix = "\\{:03o}".format(_COMPRESSED_MARKER)
print('MP_MATCH_COMPRESSED("{}", "{}{}")'.format(uncomp, prefix, comp))
# Used to calculate the "true" length of the (escaped) compressed strings.
def unescape(s):
return re.sub(r"\\\d\d\d", "!", s)
# Stats. Note this doesn't include the cost of the decompressor code.
uncomp_len = sum(len(s) + 1 for s in error_strings.keys())
comp_len = sum(1 + len(unescape(s)) + 1 for s in error_strings.values())
data_len = len(compressed_data) + 1 if compressed_data else 0
print("// Total input length: {}".format(uncomp_len))
print("// Total compressed length: {}".format(comp_len))
print("// Total data length: {}".format(data_len))
print("// Predicted saving: {}".format(uncomp_len - comp_len - data_len))
# Somewhat meaningless comparison to zlib/gzip.
all_input_bytes = "\\0".join(error_strings.keys()).encode()
print()
if hasattr(gzip, "compress"):
gzip_len = len(gzip.compress(all_input_bytes)) + num_uses * 4
print("// gzip length: {}".format(gzip_len))
print("// Percentage of gzip: {:.1f}%".format(100 * (comp_len + data_len) / gzip_len))
if hasattr(zlib, "compress"):
zlib_len = len(zlib.compress(all_input_bytes)) + num_uses * 4
print("// zlib length: {}".format(zlib_len))
print("// Percentage of zlib: {:.1f}%".format(100 * (comp_len + data_len) / zlib_len))
if __name__ == "__main__":
main(sys.argv[1], word_compression)
|