1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
|
.. _esp32_pwm:
Pulse Width Modulation
======================
Pulse width modulation (PWM) is a way to get an artificial analog output on a
digital pin. It achieves this by rapidly toggling the pin from low to high.
There are two parameters associated with this: the frequency of the toggling,
and the duty cycle. The duty cycle is defined to be how long the pin is high
compared with the length of a single period (low plus high time). Maximum
duty cycle is when the pin is high all of the time, and minimum is when it is
low all of the time.
* More comprehensive example with all **16 PWM channels and 8 timers**::
from time import sleep
from machine import Pin, PWM
try:
F = 10000 # Hz
D = 65536 // 16 # 6.25%
pins = (2, 4, 12, 13, 14, 15, 16, 18, 19, 22, 23, 25, 26, 27, 32, 33)
pwms = []
for i, pin in enumerate(pins):
f = F * (i // 2 + 1)
d = min(65535, D * (i + 1))
pwms.append(PWM(pin, freq=f, duty_u16=d))
sleep(2 / f)
print(pwms[i])
finally:
for pwm in pwms:
try:
pwm.deinit()
except:
pass
Output is::
PWM(Pin(2), freq=10000, duty_u16=4096)
PWM(Pin(4), freq=10000, duty_u16=8192)
PWM(Pin(12), freq=20000, duty_u16=12288)
PWM(Pin(13), freq=20000, duty_u16=16384)
PWM(Pin(14), freq=30030, duty_u16=20480)
PWM(Pin(15), freq=30030, duty_u16=24576)
PWM(Pin(16), freq=40000, duty_u16=28672)
PWM(Pin(18), freq=40000, duty_u16=32768)
PWM(Pin(19), freq=50000, duty_u16=36864)
PWM(Pin(22), freq=50000, duty_u16=40960)
PWM(Pin(23), freq=60060, duty_u16=45056)
PWM(Pin(25), freq=60060, duty_u16=49152)
PWM(Pin(26), freq=69930, duty_u16=53248)
PWM(Pin(27), freq=69930, duty_u16=57344)
PWM(Pin(32), freq=80000, duty_u16=61440)
PWM(Pin(33), freq=80000, duty_u16=65535)
* Example of a **smooth frequency change**::
from time import sleep
from machine import Pin, PWM
F_MIN = 1000
F_MAX = 10000
f = F_MIN
delta_f = F_MAX // 50
pwm = PWM(Pin(27), f)
while True:
pwm.freq(f)
sleep(1 / f)
sleep(0.1)
print(pwm)
f += delta_f
if f > F_MAX or f < F_MIN:
delta_f = -delta_f
print()
if f > F_MAX:
f = F_MAX
elif f < F_MIN:
f = F_MIN
See PWM wave on Pin(27) with an oscilloscope.
Output is::
PWM(Pin(27), freq=998, duty_u16=32768)
PWM(Pin(27), freq=1202, duty_u16=32768)
PWM(Pin(27), freq=1401, duty_u16=32768)
PWM(Pin(27), freq=1598, duty_u16=32768)
...
PWM(Pin(27), freq=9398, duty_u16=32768)
PWM(Pin(27), freq=9615, duty_u16=32768)
PWM(Pin(27), freq=9804, duty_u16=32768)
PWM(Pin(27), freq=10000, duty_u16=32768)
PWM(Pin(27), freq=10000, duty_u16=32768)
PWM(Pin(27), freq=9804, duty_u16=32768)
PWM(Pin(27), freq=9615, duty_u16=32768)
PWM(Pin(27), freq=9398, duty_u16=32768)
...
PWM(Pin(27), freq=1598, duty_u16=32768)
PWM(Pin(27), freq=1401, duty_u16=32768)
PWM(Pin(27), freq=1202, duty_u16=32768)
PWM(Pin(27), freq=998, duty_u16=32768)
* Example of a **smooth duty change**::
from time import sleep
from machine import Pin, PWM
DUTY_MAX = 65535
duty_u16 = 0
delta_d = 256
pwm = PWM(Pin(27), freq=1000, duty_u16=duty_u16)
while True:
pwm.duty_u16(duty_u16)
sleep(2 / pwm.freq())
print(pwm)
if duty_u16 >= DUTY_MAX:
print()
sleep(2)
elif duty_u16 <= 0:
print()
sleep(2)
duty_u16 += delta_d
if duty_u16 >= DUTY_MAX:
duty_u16 = DUTY_MAX
delta_d = -delta_d
elif duty_u16 <= 0:
duty_u16 = 0
delta_d = -delta_d
PWM wave on Pin(27) with an oscilloscope.
Output is::
PWM(Pin(27), freq=998, duty_u16=0)
PWM(Pin(27), freq=998, duty_u16=256)
PWM(Pin(27), freq=998, duty_u16=512)
PWM(Pin(27), freq=998, duty_u16=768)
PWM(Pin(27), freq=998, duty_u16=1024)
...
PWM(Pin(27), freq=998, duty_u16=64512)
PWM(Pin(27), freq=998, duty_u16=64768)
PWM(Pin(27), freq=998, duty_u16=65024)
PWM(Pin(27), freq=998, duty_u16=65280)
PWM(Pin(27), freq=998, duty_u16=65535)
PWM(Pin(27), freq=998, duty_u16=65279)
PWM(Pin(27), freq=998, duty_u16=65023)
PWM(Pin(27), freq=998, duty_u16=64767)
PWM(Pin(27), freq=998, duty_u16=64511)
...
PWM(Pin(27), freq=998, duty_u16=1023)
PWM(Pin(27), freq=998, duty_u16=767)
PWM(Pin(27), freq=998, duty_u16=511)
PWM(Pin(27), freq=998, duty_u16=255)
PWM(Pin(27), freq=998, duty_u16=0)
* Example of a **smooth duty change and PWM output inversion**::
from utime import sleep
from machine import Pin, PWM
try:
DUTY_MAX = 65535
duty_u16 = 0
delta_d = 65536 // 32
pwm = PWM(Pin(27))
pwmi = PWM(Pin(32), invert=1)
while True:
pwm.duty_u16(duty_u16)
pwmi.duty_u16(duty_u16)
duty_u16 += delta_d
if duty_u16 >= DUTY_MAX:
duty_u16 = DUTY_MAX
delta_d = -delta_d
elif duty_u16 <= 0:
duty_u16 = 0
delta_d = -delta_d
sleep(.01)
print(pwm)
print(pwmi)
finally:
try:
pwm.deinit()
except:
pass
try:
pwmi.deinit()
except:
pass
Output is::
PWM(Pin(27), freq=5000, duty_u16=0)
PWM(Pin(32), freq=5000, duty_u16=32768, invert=1)
PWM(Pin(27), freq=5000, duty_u16=2048)
PWM(Pin(32), freq=5000, duty_u16=2048, invert=1)
PWM(Pin(27), freq=5000, duty_u16=4096)
PWM(Pin(32), freq=5000, duty_u16=4096, invert=1)
PWM(Pin(27), freq=5000, duty_u16=6144)
PWM(Pin(32), freq=5000, duty_u16=6144, invert=1)
PWM(Pin(27), freq=5000, duty_u16=8192)
PWM(Pin(32), freq=5000, duty_u16=8192, invert=1)
...
See PWM waves on Pin(27) and Pin(32) with an oscilloscope.
Note: New PWM parameters take effect in the next PWM cycle.
pwm = PWM(2, duty=512)
print(pwm)
>>> PWM(Pin(2), freq=5000, duty=1023) # the duty is not relevant
pwm.init(freq=2, duty=64)
print(pwm)
>>> PWM(Pin(2), freq=2, duty=16) # the duty is not relevant
time.sleep(1 / 2) # wait one PWM period
print(pwm)
>>> PWM(Pin(2), freq=2, duty=64) # the duty is actual
Note: machine.freq(20_000_000) reduces the highest PWM frequency to 10 MHz.
Note: the Pin.OUT mode does not need to be specified. The channel is initialized
to PWM mode internally once for each Pin that is passed to the PWM constructor.
The following code is wrong::
pwm = PWM(Pin(5, Pin.OUT), freq=1000, duty=512) # Pin(5) in PWM mode here
pwm = PWM(Pin(5, Pin.OUT), freq=500, duty=256) # Pin(5) in OUT mode here, PWM is off
Use this code instead::
pwm = PWM(Pin(5), freq=1000, duty=512)
pwm.init(freq=500, duty=256)
|