File: compile_analysis.py

package info (click to toggle)
migraphx 7.0.2-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 31,384 kB
  • sloc: cpp: 205,073; python: 25,903; sh: 253; xml: 199; makefile: 59; ansic: 16
file content (164 lines) | stat: -rw-r--r-- 5,440 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import pandas as pd
import re
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import argparse


def read_compile_log(file_path):
    # Regex pattern to match lines with "value: __ ms"
    pattern = r'([\w: ]+):\s*([\d.]+(?:e[+-]?\d+)?)ms'

    data = []

    # Read the file and find matches
    with open(file_path, 'r') as file:
        for line in file:
            match = re.search(pattern, line)
            if match:
                operation = match.group(1).strip()
                try:
                    value = float(match.group(2))
                    data.append({'Operation': operation, 'Value': value})
                except:
                    print(f"Invalid Float: {match.group(2)}")

    return data


def filter_data(data, quantile):

    # Create a DataFrame from the list of dictionaries
    df = pd.DataFrame(data)
    df['Line Number'] = df.index
    df['Operation: Line Number'] = df.apply(
        lambda x: x["Operation"] + ": " + str(x['Line Number']), axis=1)
    df['Cumulative Sum'] = df['Value'].cumsum()

    print(
        f"Only included the top {round(1-quantile, 2)}% time-intensive operations"
    )
    top_operation_time = df['Value'].quantile(quantile)
    df = df[df['Value'] >= top_operation_time]

    return df


def plot_compile_analysis(df, output_path):
    df_sorted_by_time = df.sort_values(by='Value', ascending=False)
    df_sorted_by_total_time = df.groupby(
        'Operation')['Value'].sum().sort_values(ascending=False).reset_index()
    df_sorted_by_avg_time = df.groupby('Operation')['Value'].mean(
    ).sort_values(ascending=False).reset_index()
    df_counts = df['Operation'].value_counts().reset_index()

    fig = make_subplots(rows=2,
                        cols=4,
                        row_heights=[0.4, 0.6],
                        specs=[[{
                            'type': 'bar'
                        }, {
                            'type': 'bar'
                        }, {
                            'type': 'bar'
                        }, {
                            'type': 'bar'
                        }],
                               [{
                                   'type': 'scatter',
                                   'colspan': 4
                               }, None, None, None]],
                        subplot_titles=('Time Taken per Line',
                                        'Total Time Taken per Operation',
                                        'Avg Time Taken per Operation',
                                        'Number of times Operation called',
                                        'Compile Time Series Graph'),
                        vertical_spacing=0.25)

    fig.add_trace(go.Bar(
        x=df_sorted_by_time['Operation: Line Number'],
        y=df_sorted_by_time['Value'],
        name='Time Taken per Line',
        marker=dict(color='red'),
        hoverinfo='x+y',
    ),
                  row=1,
                  col=1)

    fig.add_trace(go.Bar(x=df_sorted_by_total_time['Operation'],
                         y=df_sorted_by_total_time['Value'],
                         name='Total Time Taken per Operation',
                         marker=dict(color='green'),
                         hoverinfo='x+y'),
                  row=1,
                  col=2)

    fig.add_trace(go.Bar(x=df_sorted_by_avg_time['Operation'],
                         y=df_sorted_by_avg_time['Value'],
                         name='Avg Time Taken per Operation',
                         marker=dict(color='green'),
                         hoverinfo='x+y'),
                  row=1,
                  col=3)

    fig.add_trace(go.Bar(x=df_counts['Operation'],
                         y=df_counts['count'],
                         name='Number of times Operation called',
                         marker=dict(color='royalblue'),
                         hoverinfo='x+y'),
                  row=1,
                  col=4)

    fig.update_xaxes(
        row=1,
        tickangle=45,
    )

    fig.add_trace(go.Scatter(
        x=list(range(len(df))),
        y=df['Cumulative Sum'],
        mode='lines+markers',
        text=df['Operation: Line Number'],
        hoverinfo='text',
        name='Cumulative Time',
        line=dict(width=2),
        marker=dict(size=3),
    ),
                  row=2,
                  col=1)

    fig.update_xaxes(
        title_text='Operation: Line Number',
        tickvals=list(range(len(df))),
        ticktext=df['Operation: Line Number'],
        row=2,
        col=1,
        tickangle=45,
    )

    fig.update_yaxes(title_text='Cumulative Time (ms)', row=2, col=1)

    fig.update_layout(
        title='Compile Time Analysis',
        title_x=0.5,
        title_font=dict(size=24, color='darkblue'),
        # margin=dict(l=0, r=0, t=100, b=50),
        uniformtext_minsize=12,
        uniformtext_mode='hide',
        height=1200,
        template='plotly_white',
        showlegend=False)

    fig.write_html(output_path)


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument('--file_path', required=True)
    parser.add_argument('--quantile', default=0.95)
    parser.add_argument('--output_path', default="compile_analysis.html")
    args = parser.parse_args()

    data = read_compile_log(args.file_path)
    df = filter_data(data, args.quantile)
    plot_compile_analysis(df, args.output_path)