1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
|
// ================================================================
// These are intended for streaming (i.e. single-pass) applications. Otherwise
// the formulas look different (and are more intuitive).
// ================================================================
package lib
import (
"math"
)
// ----------------------------------------------------------------
// Univariate linear regression
// ----------------------------------------------------------------
// There are N (xi, yi) pairs.
//
// minimize E = sum (yi - m xi - b)^2
//
// Set the two partial derivatives to zero and solve for m and b:
//
// DE/Dm = sum 2 (yi - m xi - b) (-xi) = 0
// DE/Db = sum 2 (yi - m xi - b) (-1) = 0
//
// sum (yi - m xi - b) (xi) = 0
// sum (yi - m xi - b) = 0
//
// sum (xi yi - m xi^2 - b xi) = 0
// sum (yi - m xi - b) = 0
//
// m sum(xi^2) + b sum(xi) = sum(xi yi)
// m sum(xi) + b N = sum(yi)
//
// [ sum(xi^2) sum(xi) ] [ m ] = [ sum(xi yi) ]
// [ sum(xi) N ] [ b ] = [ sum(yi) ]
//
// [ m ] = [ sum(xi^2) sum(xi) ]^-1 [ sum(xi yi) ]
// [ b ] [ sum(xi) N ] [ sum(yi) ]
//
// = [ N -sum(xi) ] [ sum(xi yi) ] * 1/D
// [ -sum(xi) sum(xi^2)] [ sum(yi) ]
//
// where
//
// D = N sum(xi^2) - sum(xi)^2.
//
// So
//
// N sum(xi yi) - sum(xi) sum(yi)
// m = --------------------------------
// D
//
// -sum(xi)sum(xi yi) + sum(xi^2) sum(yi)
// b = ----------------------------------------
// D
//
// ----------------------------------------------------------------
func GetLinearRegressionOLS(
nint int64,
sumx float64,
sumx2 float64,
sumxy float64,
sumy float64,
) (m, b float64) {
n := float64(nint)
D := n*sumx2 - sumx*sumx
m = (n*sumxy - sumx*sumy) / D
b = (-sumx*sumxy + sumx2*sumy) / D
return m, b
}
// We would need a second pass through the data to compute the error-bars given
// the data and the m and the b.
//
// # Young 1962, pp. 122-124. Compute sample variance of linear
// # approximations, then variances of m and b.
// var_z = 0.0
// for i in range(0, N):
// var_z += (m * xs[i] + b - ys[i])**2
// var_z /= N
//
// var_m = (N * var_z) / D
// var_b = (var_z * sumx2) / D
//
// output = [m, b, math.sqrt(var_m), math.sqrt(var_b)]
// ----------------------------------------------------------------
// GetVar is the finalizing function for computing variance from streamed
// accumulator values.
func GetVar(
nint int64,
sumx float64,
sumx2 float64,
) float64 {
n := float64(nint)
mean := sumx / n
numerator := sumx2 - mean*(2.0*sumx-n*mean)
if numerator < 0.0 { // round-off error
numerator = 0.0
}
denominator := n - 1.0
return numerator / denominator
}
// ----------------------------------------------------------------
// Unbiased estimator:
// (1/n) sum{(xi-mean)**3}
// -----------------------------
// [(1/(n-1)) sum{(xi-mean)**2}]**1.5
// mean = sumx / n; n mean = sumx
// sum{(xi-mean)^3}
// = sum{xi^3 - 3 mean xi^2 + 3 mean^2 xi - mean^3}
// = sum{xi^3} - 3 mean sum{xi^2} + 3 mean^2 sum{xi} - n mean^3
// = sumx3 - 3 mean sumx2 + 3 mean^2 sumx - n mean^3
// = sumx3 - 3 mean sumx2 + 3n mean^3 - n mean^3
// = sumx3 - 3 mean sumx2 + 2n mean^3
// = sumx3 - mean*(3 sumx2 + 2n mean^2)
// sum{(xi-mean)^2}
// = sum{xi^2 - 2 mean xi + mean^2}
// = sum{xi^2} - 2 mean sum{xi} + n mean^2
// = sumx2 - 2 mean sumx + n mean^2
// = sumx2 - 2 n mean^2 + n mean^2
// = sumx2 - n mean^2
// ----------------------------------------------------------------
// GetSkewness is the finalizing function for computing skewness from streamed
// accumulator values.
func GetSkewness(
nint int,
sumx float64,
sumx2 float64,
sumx3 float64,
) float64 {
n := float64(nint)
mean := sumx / n
numerator := sumx3 - mean*(3*sumx2-2*n*mean*mean)
numerator = numerator / n
denominator := (sumx2 - n*mean*mean) / (n - 1)
denominator = math.Pow(denominator, 1.5)
return numerator / denominator
}
// ----------------------------------------------------------------
// Unbiased:
// (1/n) sum{(x-mean)**4}
// ----------------------- - 3
// [(1/n) sum{(x-mean)**2}]**2
// sum{(xi-mean)^4}
// = sum{xi^4 - 4 mean xi^3 + 6 mean^2 xi^2 - 4 mean^3 xi + mean^4}
// = sum{xi^4} - 4 mean sum{xi^3} + 6 mean^2 sum{xi^2} - 4 mean^3 sum{xi} + n mean^4
// = sum{xi^4} - 4 mean sum{xi^3} + 6 mean^2 sum{xi^2} - 4 n mean^4 + n mean^4
// = sum{xi^4} - 4 mean sum{xi^3} + 6 mean^2 sum{xi^2} - 3 n mean^4
// = sum{xi^4} - mean*(4 sum{xi^3} - 6 mean sum{xi^2} + 3 n mean^3)
// = sumx4 - mean*(4 sumx3 - 6 mean sumx2 + 3 n mean^3)
// = sumx4 - mean*(4 sumx3 - mean*(6 sumx2 - 3 n mean^2))
func GetKurtosis(
nint int,
sumx float64,
sumx2 float64,
sumx3 float64,
sumx4 float64,
) float64 {
n := float64(nint)
mean := sumx / n
numerator := sumx4 - mean*(4*sumx3-mean*(6*sumx2-3*n*mean*mean))
numerator = numerator / n
denominator := (sumx2 - n*mean*mean) / n
denominator = denominator * denominator
return numerator/denominator - 3.0
}
// ----------------------------------------------------------------
// Non-streaming implementation:
//
// def find_sample_covariance(xs, ys):
// n = len(xs)
// mean_x = find_mean(xs)
// mean_y = find_mean(ys)
//
// sum = 0.0
// for k in range(0, n):
// sum += (xs[k] - mean_x) * (ys[k] - mean_y)
//
// return sum / (n-1.0)
func GetCov(
nint int64,
sumx float64,
sumy float64,
sumxy float64,
) float64 {
n := float64(nint)
meanx := sumx / n
meany := sumy / n
numerator := sumxy - meanx*sumy - meany*sumx + n*meanx*meany
denominator := n - 1
return numerator / denominator
}
// ----------------------------------------------------------------
func GetCovMatrix(
nint int64,
sumx float64,
sumx2 float64,
sumy float64,
sumy2 float64,
sumxy float64,
) (Q [2][2]float64) {
n := float64(nint)
denominator := n - 1
Q[0][0] = (sumx2 - sumx*sumx/n) / denominator
Q[0][1] = (sumxy - sumx*sumy/n) / denominator
Q[1][0] = Q[0][1]
Q[1][1] = (sumy2 - sumy*sumy/n) / denominator
return Q
}
// ----------------------------------------------------------------
// Principal component analysis can be used for linear regression:
//
// * Compute the covariance matrix for the x's and y's.
//
// * Find its eigenvalues and eigenvectors of the cov. (This is real-symmetric
// so Jacobi iteration is simple and fine.)
//
// * The principal eigenvector points in the direction of the fit.
//
// * The covariance matrix is computed on zero-mean data so the intercept
// is zero. The fit equation is of the form (y - nu) = m*(x - mu) where mu
// and nu are x and y means, respectively.
//
// * If the fit is perfect then the 2nd eigenvalue will be zero; if the fit is
// good then the 2nd eigenvalue will be smaller; if the fit is bad then
// they'll be about the same. I use 1 - |lambda2|/|lambda1| as an indication
// of quality of the fit.
//
// Standard ("ordinary least-squares") linear regression is appropriate when
// the errors are thought to be all in the y's. PCA ("total least-squares") is
// appropriate when the x's and the y's are thought to both have errors.
func GetLinearRegressionPCA(
eigenvalue_1 float64,
eigenvalue_2 float64,
eigenvector_1 [2]float64,
eigenvector_2 [2]float64,
x_mean float64,
y_mean float64,
) (m, b, quality float64) {
abs_1 := math.Abs(eigenvalue_1)
abs_2 := math.Abs(eigenvalue_2)
quality = 1.0
if abs_1 == 0.0 {
quality = 0.0
} else if abs_2 > 0.0 {
quality = 1.0 - abs_2/abs_1
}
a0 := eigenvector_1[0]
a1 := eigenvector_1[1]
m = a1 / a0
b = y_mean - m*x_mean
return m, b, quality
}
|