1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863
|
/** \file hyper.c
* \brief MINC 2.0 Hyperslab Functions
* \author Bert Vincent
*
* Functions to manipulate hyperslabs of volume image data.
************************************************************************/
#include <stdlib.h>
#include <hdf5.h>
#include "minc2.h"
#include "minc2_private.h"
#define MIRW_OP_READ 1
#define MIRW_OP_WRITE 2
typedef unsigned long mioffset_t;
/** In-place array dimension restructuring.
*
* Based on Chris H.Q. Ding, "An Optimal Index Reshuffle Algorithm for
* Multidimensional Arrays and its Applications for Parallel Architectures"
* IEEE Transactions on Parallel and Distributed Systems, Vol.12, No.3,
* March 2001, pp.306-315.
*
* I rewrote the algorithm in "C" an generalized it to N dimensions.
*
* Guaranteed to do the minimum number of memory moves, but requires
* that we allocate a bitmap of nelem/8 bytes. The paper suggests
* ways to eliminate the bitmap - I'll work on it.
*/
/**
* Map a set of array coordinates to a linear offset in the array memory.
*/
static mioffset_t
index_to_offset(int ndims,
const unsigned long sizes[],
const unsigned long index[])
{
mioffset_t offset = index[0];
int i;
for (i = 1; i < ndims; i++) {
offset *= sizes[i];
offset += index[i];
}
return (offset);
}
/**
* Map a linear offset to a set of coordinates in a multidimensional array.
*/
static void
offset_to_index(int ndims,
const unsigned long sizes[],
mioffset_t offset,
unsigned long index[])
{
int i;
for (i = ndims - 1; i > 0; i--) {
index[i] = offset % sizes[i];
offset /= sizes[i];
}
index[0] = offset;
}
/* Trivial bitmap test & set.
*/
#define BIT_TST(bm, i) (bm[(i) / 8] & (1 << ((i) % 8)))
#define BIT_SET(bm, i) (bm[(i) / 8] |= (1 << ((i) % 8)))
/** The main restructuring code.
*/
MNCAPI void
restructure_array(int ndims, /* Dimension count */
unsigned char *array, /* Raw data */
const unsigned long *lengths_perm, /* Permuted lengths */
int el_size, /* Element size, in bytes */
const int *map, /* Mapping array */
const int *dir) /* Direction array, in permuted order */
{
unsigned long index[MI2_MAX_VAR_DIMS]; /* Raw indices */
unsigned long index_perm[MI2_MAX_VAR_DIMS]; /* Permuted indices */
unsigned long lengths[MI2_MAX_VAR_DIMS]; /* Raw (unpermuted) lengths */
unsigned char *temp;
mioffset_t offset_start;
mioffset_t offset_next;
mioffset_t offset;
unsigned char *bitmap;
size_t total;
int i;
if ((temp = malloc(el_size)) == NULL) {
return;
}
/**
* Permute the lengths from their "output" configuration back into
* their "raw" or native order:
**/
for (i = 0; i < ndims; i++) {
//lengths[i] = lengths_perm[map[i]];
lengths[map[i]] = lengths_perm[i];
}
/**
* Calculate the total size of the array, in elements.
**/
total = 1;
for (i = 0; i < ndims; i++) {
total *= lengths[i];
}
/**
* Allocate a bitmap with enough space to hold one bit for each
* element in the array.
**/
bitmap = calloc((total + 8 - 1) / 8, 1); /* bit array */
if (bitmap == NULL) {
return;
}
for (offset_start = 0; offset_start < total; offset_start++) {
/**
* Look for an unset bit - that's where we start the next
* cycle.
**/
if (!BIT_TST(bitmap, offset_start)) {
/**
* Found a cycle we have not yet performed.
**/
offset_next = -1; /* Initialize. */
#ifdef DEBUG
printf("%ld", offset_start);
#endif /* DEBUG */
/**
* Save the first element in this cycle.
**/
memcpy(temp, array + (offset_start * el_size), el_size);
/**
* We've touched this location.
**/
BIT_SET(bitmap, offset_start);
offset = offset_start;
/**
* Do until the cycle repeats.
**/
while (offset_next != offset_start) {
/**
* Compute the index from the offset and permuted length.
**/
offset_to_index(ndims, lengths_perm, offset, index_perm);
/**
* Permute the index into the alternate arrangement.
**/
for (i = 0; i < ndims; i++) {
if (dir[i] < 0) {
// index[i] = lengths[i] - index_perm[map[i]] - 1;
index[map[i]] = lengths[map[i]] - index_perm[i] - 1;
}
else {
//index[i] = index_perm[map[i]];
index[map[i]] = index_perm[i];
}
}
/**
* Calculate the next offset from the permuted index.
**/
offset_next = index_to_offset(ndims, lengths, index);
#ifdef DEBUG
if (offset_next >= total) {
printf("Fatal - offset %ld out of bounds!\n", offset_next);
printf("lengths %ld,%ld,%ld\n",
lengths[0],lengths[1],lengths[2]);
printf("index %ld,%ld,%ld\n",
index_perm[0], index_perm[0], index_perm[2]);
exit(-1);
}
#endif
/**
* If we are not at the end of the cycle...
**/
if (offset_next != offset_start) {
/**
* Note that we've touched a new location.
**/
BIT_SET(bitmap, offset_next);
#ifdef DEBUG
printf(" - %ld", offset_next);
#endif /* DEBUG */
/**
* Move from old to new location.
**/
memcpy(array + (offset * el_size),
array + (offset_next * el_size),
el_size);
/**
* Advance offset to the next location in the cycle.
**/
offset = offset_next;
}
}
/**
* Store the first value in the cycle, which we saved in
* 'tmp', into the last offset in the cycle.
**/
memcpy(array + (offset * el_size), temp, el_size);
#ifdef DEBUG
printf("\n");
#endif /* DEBUG */
}
}
free(bitmap); /* Get rid of the bitmap. */
free(temp);
}
/** Calculates and returns the number of bytes required to store the
* hyperslab specified by the \a n_dimensions and the
* \a count parameters.
*/
int
miget_hyperslab_size(mitype_t volume_data_type, /**< Data type of a voxel. */
int n_dimensions, /**< Dimensionality */
const unsigned long count[], /**< Dimension lengths */
misize_t *size_ptr) /**< Returned byte count */
{
int voxel_size;
misize_t temp;
int i;
hid_t type_id;
type_id = mitype_to_hdftype(volume_data_type, TRUE);
if (type_id < 0) {
return (MI_ERROR);
}
voxel_size = H5Tget_size(type_id);
temp = 1;
for (i = 0; i < n_dimensions; i++) {
temp *= count[i];
}
*size_ptr = (temp * voxel_size);
H5Tclose(type_id);
return (MI_NOERROR);
}
/** "semiprivate" function for translating coordinates.
*/
int
mitranslate_hyperslab_origin(mihandle_t volume,
const unsigned long start[],
const unsigned long count[],
hssize_t hdf_start[],
hsize_t hdf_count[],
int dir[]) /* direction vector in file order */
{
int n_different = 0;
int file_i;
int ndims = volume->number_of_dims;
int j;
for(j=0; j<ndims; j++)
{
hdf_count[j]=0;
hdf_start[j]=0;
}
for (file_i = 0; file_i < ndims; file_i++) {
midimhandle_t hdim;
int user_i;
/* Set up the basic translations of dimensions, for
* flipping directions and swapping indices.
*/
if (volume->dim_indices != NULL) {
/* Have to swap indices */
user_i = volume->dim_indices[file_i];
if (user_i != file_i) {
n_different++;
}
}
else {
user_i = file_i;
}
hdim = volume->dim_handles[user_i];
//hdim = volume->dim_handles[file_i];
switch (hdim->flipping_order) {
case MI_FILE_ORDER:
//hdf_start[file_i] = start[user_i];
hdf_start[user_i] = start[file_i];
dir[file_i] = 1; /* Set direction positive */
break;
case MI_COUNTER_FILE_ORDER:
//hdf_start[file_i] = hdim->length - start[user_i] - count[user_i];
hdf_start[user_i] = hdim->length - start[file_i] - count[file_i];
dir[file_i] = -1; /* Set direction negative */
break;
case MI_POSITIVE:
if (hdim->step > 0) { /* Positive? */
//hdf_start[file_i] = start[user_i]; /* Use raw file order. */
hdf_start[user_i] = start[file_i];
dir[file_i] = 1; /* Set direction positive */
}
else {
//hdf_start[file_i] = hdim->length - start[user_i] - count[user_i];
hdf_start[user_i] = hdim->length - start[file_i] - count[file_i];
dir[file_i] = -1; /* Set direction negative */
}
break;
case MI_NEGATIVE:
if (hdim->step < 0) { /* Negative? */
//hdf_start[file_i] = start[user_i]; /* Use raw file order */
hdf_start[user_i] = start[file_i];
dir[file_i] = 1; /* Set direction positive */
}
else {
//hdf_start[file_i] = hdim->length - start[user_i] - count[user_i];
hdf_start[user_i] = hdim->length - start[file_i] - count[file_i];
dir[file_i] = -1; /* Set direction negative */
}
break;
}
//hdf_count[file_i] = count[user_i];
hdf_count[user_i] = count[file_i];
}
return (n_different);
}
/** Read/write a hyperslab of data. This is the simplified function
* which performs no value conversion. It is much more efficient than
* mirw_hyperslab_icv()
*/
static int
mirw_hyperslab_raw(int opcode,
mihandle_t volume,
mitype_t midatatype,
const unsigned long start[],
const unsigned long count[],
void *buffer)
{
hid_t dset_id = -1;
hid_t mspc_id = -1;
hid_t fspc_id = -1;
hid_t type_id = -1;
int result = MI_ERROR;
hsize_t hdf_start[MI2_MAX_VAR_DIMS];
hsize_t hdf_count[MI2_MAX_VAR_DIMS];
int dir[MI2_MAX_VAR_DIMS]; /* Direction vector in file order */
int ndims;
int n_different = 0;
/* Disallow write operations to anything but the highest resolution.
*/
if (opcode == MIRW_OP_WRITE && volume->selected_resolution != 0) {
return (MI_ERROR);
}
dset_id = volume->image_id;
if (dset_id < 0) {
goto cleanup;
}
fspc_id = H5Dget_space(dset_id);
if (fspc_id < 0) {
goto cleanup;
}
if (midatatype == MI_TYPE_UNKNOWN) {
type_id = H5Tcopy(volume->mtype_id);
}
else {
type_id = mitype_to_hdftype(midatatype, TRUE);
}
ndims = volume->number_of_dims;
if (ndims == 0) {
/* A scalar volume is possible but extremely unlikely, not to
* mention useless!
*/
mspc_id = H5Screate(H5S_SCALAR);
}
else {
n_different = mitranslate_hyperslab_origin(volume,
start,
count,
hdf_start,
hdf_count,
dir);
mspc_id = H5Screate_simple(ndims, hdf_count, NULL);
if (mspc_id < 0) {
goto cleanup;
}
}
result = H5Sselect_hyperslab(fspc_id, H5S_SELECT_SET, hdf_start, NULL,
hdf_count, NULL);
if (result < 0) {
goto cleanup;
}
if (opcode == MIRW_OP_READ) {
result = H5Dread(dset_id, type_id, mspc_id, fspc_id, H5P_DEFAULT,
buffer);
/* Restructure the array after reading the data in file orientation.
*/
if (n_different != 0) {
restructure_array(ndims, buffer, count, H5Tget_size(type_id),
volume->dim_indices, dir);
}
}
else {
volume->is_dirty = TRUE; /* Mark as modified. */
/* Restructure array before writing to file.
*/
if (n_different != 0) {
unsigned long icount[MI2_MAX_VAR_DIMS];
int idir[MI2_MAX_VAR_DIMS];
int imap[MI2_MAX_VAR_DIMS];
int i;
/* Invert before calling */
for (i = 0; i < ndims; i++) {
//icount[i] = count[volume->dim_indices[i]];
icount[volume->dim_indices[i]] = count[i];
//idir[i] = dir[volume->dim_indices[i]];
idir[volume->dim_indices[i]] = dir[i];
// this one was correct the original way
imap[volume->dim_indices[i]] = i;
}
restructure_array(ndims, buffer, icount, H5Tget_size(type_id),
imap, idir);
}
result = H5Dwrite(dset_id, type_id, mspc_id, fspc_id, H5P_DEFAULT,
buffer);
}
cleanup:
if (type_id >= 0) {
H5Tclose(type_id);
}
if (mspc_id >= 0) {
H5Sclose(mspc_id);
}
if (fspc_id >= 0) {
H5Sclose(fspc_id);
}
return (result);
}
/** Read/write a hyperslab of data, performing dimension remapping
* and data rescaling as needed.
*/
static int
mirw_hyperslab_icv(int opcode,
mihandle_t volume,
int icv,
const unsigned long start[],
const unsigned long count[],
void *buffer)
{
int ndims;
int nbytes;
int nc_type;
int result = MI_ERROR;
long icv_start[MI2_MAX_VAR_DIMS];
long icv_count[MI2_MAX_VAR_DIMS];
int dir[MI2_MAX_VAR_DIMS]; /* Direction, 1 or -1, in file order */
int n_different = 0;
/* Disallow write operations to anything but the highest resolution.
*/
if (opcode == MIRW_OP_WRITE && volume->selected_resolution != 0) {
return (MI_ERROR);
}
miicv_inqint(icv, MI_ICV_TYPE, &nc_type);
nbytes = MI2typelen(nc_type);
ndims = volume->number_of_dims;
if (ndims != 0) {
int i;
hssize_t hdf_start[MI2_MAX_VAR_DIMS];
hsize_t hdf_count[MI2_MAX_VAR_DIMS];
n_different = mitranslate_hyperslab_origin(volume,
start,
count,
hdf_start,
hdf_count,
dir);
for (i = 0; i < ndims; i++) {
icv_start[i] = hdf_start[i];
icv_count[i] = hdf_count[i];
}
}
if (opcode == MIRW_OP_READ) {
result = miicv_get(icv, icv_start, icv_count, buffer);
/* Now we have to restructure the array.
* Count must be in raw order here.
*/
if (result == MI_NOERROR && n_different != 0) {
restructure_array(ndims, buffer, count, nbytes,
volume->dim_indices, dir);
}
}
else {
volume->is_dirty = TRUE; /* Flag as modified */
/* Restructure the data before writing.
* Count must be in raw order here.
*/
if (n_different != 0) {
restructure_array(ndims, buffer, count, nbytes,
volume->dim_indices, dir);
}
result = miicv_put(icv, icv_start, icv_count, buffer);
}
return (result);
}
/** Reads the real values in the volume from the interval min through
* max, mapped to the maximum representable range for the requested
* data type. Float type is NOT an allowed data type.
*/
int
miget_hyperslab_normalized(mihandle_t volume,
mitype_t buffer_data_type,
const unsigned long start[],
const unsigned long count[],
double min,
double max,
void *buffer)
{
hid_t file_id;
int var_id;
int icv;
int result;
int is_signed;
int nctype;
if (min > max) {
return (MI_ERROR);
}
file_id = volume->hdf_id;
if (file_id < 0) {
return (MI_ERROR);
}
var_id = ncvarid(file_id, MIimage);
if (var_id < 0) {
return (MI_ERROR);
}
nctype = mitype_to_nctype(buffer_data_type, &is_signed);
if (nctype == NC_FLOAT || nctype == NC_DOUBLE) {
return (MI_ERROR);
}
if ((icv = miicv_create()) < 0) {
return (MI_ERROR);
}
result = miicv_setint(icv, MI_ICV_TYPE, nctype);
result = miicv_setstr(icv, MI_ICV_SIGN, is_signed ? MI_SIGNED : MI_UNSIGNED);
result = miicv_setdbl(icv, MI_ICV_IMAGE_MIN, min);
result = miicv_setdbl(icv, MI_ICV_IMAGE_MAX, max);
result = miicv_setint(icv, MI_ICV_USER_NORM, TRUE);
result = miicv_setint(icv, MI_ICV_DO_NORM, TRUE);
result = miicv_attach(icv, file_id, var_id);
if (result == MI_NOERROR) {
result = mirw_hyperslab_icv(MIRW_OP_READ, volume, icv, start, count,
buffer);
miicv_detach(icv);
}
miicv_free(icv);
return (result);
}
/** Get a hyperslab from the file, with the assistance of a MINC image
* conversion variable (ICV).
*/
int
miget_hyperslab_with_icv(mihandle_t volume, /**< A MINC 2.0 volume handle */
int icv, /**< The ICV to use */
mitype_t buffer_data_type, /**< Output datatype */
const unsigned long start[], /**< Start coordinates */
const unsigned long count[], /**< Lengths of edges */
void *buffer) /**< Output memory buffer */
{
hid_t file_id;
int var_id;
int result;
int is_signed;
int nctype;
file_id = volume->hdf_id;
var_id = ncvarid(file_id, MIimage);
nctype = mitype_to_nctype(buffer_data_type, &is_signed);
miicv_setint(icv, MI_ICV_TYPE, nctype);
miicv_setstr(icv, MI_ICV_SIGN, is_signed ? MI_SIGNED : MI_UNSIGNED);
result = miicv_attach(icv, file_id, var_id);
if (result == MI_NOERROR) {
result = mirw_hyperslab_icv(MIRW_OP_READ, volume, icv, start, count,
buffer);
miicv_detach(icv);
}
return (result);
}
/** Write a hyperslab to the file, with the assistance of a MINC image
* conversion variable (ICV).
*/
int
miset_hyperslab_with_icv(mihandle_t volume, /**< A MINC 2.0 volume handle */
int icv, /**< The ICV to use */
mitype_t buffer_data_type, /**< Output datatype */
const unsigned long start[], /**< Start coordinates */
const unsigned long count[], /**< Lengths of edges */
void *buffer) /**< Output memory buffer */
{
hid_t file_id;
int var_id;
int result;
int is_signed;
int nctype;
file_id = volume->hdf_id;
var_id = ncvarid(file_id, MIimage);
nctype = mitype_to_nctype(buffer_data_type, &is_signed);
miicv_setint(icv, MI_ICV_TYPE, nctype);
miicv_setstr(icv, MI_ICV_SIGN, is_signed ? MI_SIGNED : MI_UNSIGNED);
result = miicv_attach(icv, file_id, var_id);
if (result == MI_NOERROR) {
result = mirw_hyperslab_icv(MIRW_OP_WRITE,
volume,
icv,
start,
count,
(void *) buffer);
miicv_detach(icv);
}
return (result);
}
/** Read a hyperslab from the file into the preallocated buffer,
* converting from the stored "voxel" data range to the desired
* "real" (float or double) data range.
*/
int
miget_real_value_hyperslab(mihandle_t volume,
mitype_t buffer_data_type,
const unsigned long start[],
const unsigned long count[],
void *buffer)
{
hid_t file_id;
int var_id;
int icv;
int result;
int is_signed;
int nctype;
int i;
int ndims = volume->number_of_dims;
midimhandle_t hdim;
file_id = volume->hdf_id;
var_id = ncvarid(file_id, MIimage);
nctype = mitype_to_nctype(buffer_data_type, &is_signed);
if ((icv = miicv_create()) < 0) {
return (MI_ERROR);
}
miicv_setint(icv, MI_ICV_TYPE, nctype);
miicv_setstr(icv, MI_ICV_SIGN, is_signed ? MI_SIGNED : MI_UNSIGNED);
miicv_setint(icv, MI_ICV_DO_RANGE, TRUE);
miicv_setint(icv, MI_ICV_DO_NORM, TRUE);
miicv_setint(icv, MI_ICV_DO_DIM_CONV, FALSE);
//figure out whether we need to flip image L.B May 18/2011
for (i=0; i < volume->number_of_dims; i++)
{
midimhandle_t hdim;
hdim = volume->dim_handles[i];
switch (hdim->flipping_order) {
case MI_FILE_ORDER:
miicv_setint(icv, MI_ICV_DO_DIM_CONV, FALSE);
break;
case MI_COUNTER_FILE_ORDER:
case MI_POSITIVE:
if (hdim->step < 0)
miicv_setint(icv, MI_ICV_DO_DIM_CONV, TRUE);
break;
case MI_NEGATIVE:
if (hdim->step > 0)
miicv_setint(icv, MI_ICV_DO_DIM_CONV, TRUE);
break;
default:
return;
}
}
result = miicv_attach(icv, file_id, var_id);
if (result == MI_NOERROR) {
result = mirw_hyperslab_icv(MIRW_OP_READ,
volume,
icv,
start,
count,
(void *) buffer);
miicv_detach(icv);
}
miicv_free(icv);
return (result);
}
/** Write a hyperslab to the file from the preallocated buffer,
* converting from the stored "voxel" data range to the desired
* "real" (float or double) data range.
*/
int
miset_real_value_hyperslab(mihandle_t volume,
mitype_t buffer_data_type,
const unsigned long start[],
const unsigned long count[],
void *buffer)
{
hid_t file_id;
int var_id;
int icv;
int result;
int is_signed;
int nctype;
file_id = volume->hdf_id;
var_id = ncvarid(file_id, MIimage);
nctype = mitype_to_nctype(buffer_data_type, &is_signed);
if ((icv = miicv_create()) < 0) {
return (MI_ERROR);
}
miicv_setint(icv, MI_ICV_TYPE, nctype);
miicv_setstr(icv, MI_ICV_SIGN, is_signed ? MI_SIGNED : MI_UNSIGNED);
result = miicv_attach(icv, file_id, var_id);
if (result == MI_NOERROR) {
result = mirw_hyperslab_icv(MIRW_OP_WRITE,
volume,
icv,
start,
count,
(void *) buffer);
miicv_detach(icv);
}
miicv_free(icv);
return (result);
}
/** Read a hyperslab from the file into the preallocated buffer,
* with no range conversions or normalization. Type conversions will
* be performed if necessary.
*/
int
miget_voxel_value_hyperslab(mihandle_t volume,
mitype_t buffer_data_type,
const unsigned long start[],
const unsigned long count[],
void *buffer)
{
return mirw_hyperslab_raw(MIRW_OP_READ, volume, buffer_data_type,
start, count, buffer);
}
/** Write a hyperslab to the file from the preallocated buffer,
* with no range conversions or normalization. Type conversions will
* be performed if necessary.
*/
int
miset_voxel_value_hyperslab(mihandle_t volume,
mitype_t buffer_data_type,
const unsigned long start[],
const unsigned long count[],
void *buffer)
{
return mirw_hyperslab_raw(MIRW_OP_WRITE, volume, buffer_data_type,
start, count, (void *) buffer);
}
|