1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859
|
/* Copyright David Leonard & Andrew Janke, 2000. All rights reserved. */
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <limits.h>
#include <float.h>
#include "node.h"
#ifndef TRUE
# define TRUE 1
#endif
#ifndef FALSE
# define FALSE 0
#endif
#define INVALID_VALUE -DBL_MAX
scalar_t eval_index(int, int *, node_t, vector_t, scalar_t);
scalar_t eval_sum(int, int *, node_t, vector_t);
scalar_t eval_prod(int, int *, node_t, vector_t);
scalar_t eval_max(int, int *, node_t, vector_t, double, int);
vector_t eval_vector(int, int *, node_t, sym_t);
vector_t gen_vector(int, int *, node_t, sym_t);
vector_t gen_range(int, int *, node_t, sym_t);
scalar_t for_loop(int, int *, node_t n, sym_t sym);
extern int debug;
extern int propagate_nan;
extern double value_for_illegal_operations;
void eval_error(node_t n, const char *msg){
int pos = n->pos;
show_error(pos, msg);
}
void show_error(int pos, const char *msg){
extern const char *expression;
const char *c;
int thisline, ichar, linenum;
if (pos != -1) {
thisline = 0;
linenum=1;
for (ichar=0; ichar < pos; ichar++) {
if (expression[ichar] == '\n') {
thisline = ichar+1;
linenum++;
}
}
pos -= thisline;
fprintf(stderr, "\nLine %d:\n", linenum);
for (c = &expression[thisline]; *c && *c != '\n'; c++) {
(void) putc((int) *c, stderr);
}
(void) putc((int) '\n', stderr);
for (c = &expression[thisline]; *c; c++) {
if (pos-- == 0)
break;
if (*c == '\t') fprintf(stderr, "\t");
else fprintf(stderr, " ");
}
fprintf(stderr, "^\n");
}
fprintf(stderr, "%s\n", msg);
exit(1);
}
/* Try to evaluate an expression in a scalar context */
scalar_t eval_scalar(int width, int *eval_flags, node_t n, sym_t sym){
vector_t v;
scalar_t s, s2, result;
scalar_t args[3];
double vals[3];
int *eval_flags2, *isnan_flags;
int found_invalid, all_true, all_false;
int iarg, ivalue;
/* Check that node is of correct type */
if (!node_is_scalar(n)) {
eval_error(n, "Expression is not a scalar");
}
/* Check special case where all arguments are scalar and we can test
for invalid values in a general way */
if (n->flags & ALLARGS_SCALAR) {
/* Check that we don't have too many arguments */
if (n->numargs > (int) sizeof(args)/sizeof(args[0])) {
eval_error(n, "Internal error: too many arguments");
}
/* Evaluate each argument and save the result. */
for (iarg=0; iarg < n->numargs; iarg++) {
args[iarg] = eval_scalar(width, eval_flags, n->expr[iarg], sym);
}
/* Set up the result scalar. We re-use the first argument if
no one else is using it. */
if (n->numargs > 0 && args[0]->refcnt == 1) {
result = args[0];
scalar_incr_ref(result);
}
else {
result = new_scalar(width);
}
/* Loop over all values in scalar */
for (ivalue=0; ivalue < width; ivalue++) {
/* Check the eval flag */
if (eval_flags != NULL && !eval_flags[ivalue]) continue;
/* Get the values, checking for invalid values. */
found_invalid = FALSE;
for (iarg=0; iarg < n->numargs; iarg++) {
vals[iarg] = args[iarg]->vals[ivalue];
if (vals[iarg] == INVALID_VALUE) {
found_invalid = TRUE;
}
}
/* Debug */
if (debug) {
(void) fprintf(stderr, "scalar %s:", node_name(n));
for (iarg=0; iarg < n->numargs; iarg++)
(void) fprintf(stderr, " %g", vals[iarg]);
(void) fprintf(stderr, "\n");
}
/* Check for an invalid value. If we are testing for them,
return 1.0, otherwise return an invalid value. */
if (found_invalid) {
result->vals[ivalue] =
( (n->type == NODETYPE_ISNAN) ? 1.0 : INVALID_VALUE );
continue;
}
/* Do the operation */
switch (n->type) {
case NODETYPE_ADD:
result->vals[ivalue] = vals[0] + vals[1]; break;
case NODETYPE_SUB:
result->vals[ivalue] = vals[0] - vals[1]; break;
case NODETYPE_MUL:
result->vals[ivalue] = vals[0] * vals[1]; break;
case NODETYPE_DIV:
if (vals[1] == 0.0)
result->vals[ivalue] = value_for_illegal_operations;
else
result->vals[ivalue] = vals[0] / vals[1];
break;
case NODETYPE_LT:
result->vals[ivalue] = vals[0] < vals[1]; break;
case NODETYPE_LE:
result->vals[ivalue] = vals[0] <= vals[1]; break;
case NODETYPE_GT:
result->vals[ivalue] = vals[0] > vals[1]; break;
case NODETYPE_GE:
result->vals[ivalue] = vals[0] >= vals[1]; break;
case NODETYPE_EQ:
result->vals[ivalue] = vals[0] == vals[1]; break;
case NODETYPE_NE:
result->vals[ivalue] = vals[0] != vals[1]; break;
case NODETYPE_NOT:
result->vals[ivalue] = (vals[0] == 0.0); break;
case NODETYPE_AND:
result->vals[ivalue] = (vals[0] != 0.0) && (vals[1] != 0.0);
break;
case NODETYPE_OR:
result->vals[ivalue] = (vals[0] != 0.0) || (vals[1] != 0.0);
break;
case NODETYPE_ISNAN:
/* We only get here if the value is valid */
result->vals[ivalue] = 0.0; break;
case NODETYPE_POW:
result->vals[ivalue] = pow(vals[0], vals[1]); break;
case NODETYPE_SQRT:
if (vals[0] < 0.0)
result->vals[ivalue] = value_for_illegal_operations;
else
result->vals[ivalue] = sqrt(vals[0]);
break;
case NODETYPE_ABS:
result->vals[ivalue] = fabs(vals[0]); break;
case NODETYPE_EXP:
result->vals[ivalue] = exp(vals[0]); break;
case NODETYPE_LOG:
if (vals[0] <= 0.0)
result->vals[ivalue] = value_for_illegal_operations;
else
result->vals[ivalue] = log(vals[0]);
break;
case NODETYPE_SIN:
result->vals[ivalue] = sin(vals[0]); break;
case NODETYPE_COS:
result->vals[ivalue] = cos(vals[0]); break;
case NODETYPE_TAN:
result->vals[ivalue] = tan(vals[0]); break;
case NODETYPE_ASIN:
result->vals[ivalue] = asin(vals[0]); break;
case NODETYPE_ACOS:
result->vals[ivalue] = acos(vals[0]); break;
case NODETYPE_ATAN:
result->vals[ivalue] = atan(vals[0]); break;
case NODETYPE_CLAMP:
if (vals[0] < vals[1]) result->vals[ivalue] = vals[1];
else if (vals[0] > vals[2]) result->vals[ivalue] = vals[2];
else result->vals[ivalue] = vals[0];
break;
case NODETYPE_SEGMENT:
result->vals[ivalue] =
( (vals[0] >= vals[1] && vals[0] <= vals[2]) ? 1.0 : 0.0);
break;
} /* switch on type */
} /* Loop over values of scalar */
/* Free the intermediate results */
for (iarg=0; iarg < n->numargs; iarg++) {
scalar_free(args[iarg]);
}
/* Return the result vector */
return result;
} /* If all args are scalar */
/* If we get here then we are not doing a simple scalar operation
and we have to handle invalid values on a case-by-case basis. */
switch (n->type) {
case NODETYPE_EXPRLIST:
if (node_is_scalar(n->expr[0])) {
s = eval_scalar(width, eval_flags, n->expr[0], sym);
scalar_free(s);
}
else {
v = eval_vector(width, eval_flags, n->expr[0], sym);
vector_free(v);
}
return eval_scalar(width, eval_flags, n->expr[1], sym);
case NODETYPE_INDEX:
v = eval_vector(width, eval_flags, n->expr[0], sym);
s = eval_scalar(width, eval_flags, n->expr[1], sym);
result = eval_index(width, eval_flags, n, v, s);
vector_free(v);
scalar_free(s);
return result;
case NODETYPE_SUM:
v = eval_vector(width, eval_flags, n->expr[0], sym);
s = eval_sum(width, eval_flags, n, v);
vector_free(v);
return s;
case NODETYPE_PROD:
v = eval_vector(width, eval_flags, n->expr[0], sym);
s = eval_prod(width, eval_flags, n, v);
vector_free(v);
return s;
case NODETYPE_AVG:
v = eval_vector(width, eval_flags, n->expr[0], sym);
s = eval_sum(width, eval_flags, n, v);
for (ivalue=0; ivalue < width; ivalue++) {
if (eval_flags != NULL && !eval_flags[ivalue]) continue;
if (s->vals[ivalue] != INVALID_VALUE)
s->vals[ivalue] /= (double) v->len;
}
vector_free(v);
return s;
case NODETYPE_LEN:
v = eval_vector(width, eval_flags, n->expr[0], sym);
s = new_scalar(width);
for (ivalue=0; ivalue < width; ivalue++) {
if (eval_flags != NULL && !eval_flags[ivalue]) continue;
s->vals[ivalue] = (double) v->len;
}
if (debug) {
(void) fprintf(stderr, "len : %d\n", v->len);
}
vector_free(v);
return s;
case NODETYPE_MAX:
v = eval_vector(width, eval_flags, n->expr[0], sym);
s = eval_max(width, eval_flags, n, v, 1.0, 0);
vector_free(v);
return s;
case NODETYPE_MIN:
v = eval_vector(width, eval_flags, n->expr[0], sym);
s = eval_max(width, eval_flags, n, v, -1.0, 0);
vector_free(v);
return s;
case NODETYPE_IMAX:
v = eval_vector(width, eval_flags, n->expr[0], sym);
s = eval_max(width, eval_flags, n, v, 1.0, 1);
vector_free(v);
return s;
case NODETYPE_IMIN:
v = eval_vector(width, eval_flags, n->expr[0], sym);
s = eval_max(width, eval_flags, n, v, -1.0, 1);
vector_free(v);
return s;
case NODETYPE_FOR:
return for_loop(width, eval_flags, n, sym);
case NODETYPE_IDENT:
s = sym_lookup_scalar(n->ident, sym);
if (s) {
scalar_incr_ref(s);
}
return s;
case NODETYPE_REAL:
s = new_scalar(width);
for (ivalue=0; ivalue < width; ivalue++) {
s->vals[ivalue] = n->real;
}
return s;
case NODETYPE_ASSIGN:
s = eval_scalar(width, eval_flags, n->expr[0], sym);
sym_set_scalar(width, eval_flags, s, n->ident, sym);
return s;
case NODETYPE_LET:
if (ident_is_scalar(n->ident)) {
s = eval_scalar(width, eval_flags, n->expr[0], sym);
sym_set_scalar(width, eval_flags, s, n->ident, sym);
scalar_free(s);
} else {
v = eval_vector(width, eval_flags, n->expr[0], sym);
sym_set_vector(width, eval_flags, v, n->ident, sym);
vector_free(v);
}
s = eval_scalar(width, eval_flags, n->expr[1], sym);
return s;
case NODETYPE_IFELSE:
/* Do the test */
s = eval_scalar(width, eval_flags, n->expr[0], sym);
/* Set the eval flags based on the results. Keep track of invalid
data in the expression - we will not evaluate either part in that
case. */
eval_flags2 = malloc(sizeof(eval_flags[0]) * width);
isnan_flags = malloc(sizeof(eval_flags[0]) * width);
all_true = TRUE;
all_false = TRUE;
for (ivalue=0; ivalue < width; ivalue++) {
isnan_flags[ivalue] = (s->vals[ivalue] == INVALID_VALUE);
eval_flags2[ivalue] = ((eval_flags == NULL ? 1 : eval_flags[ivalue])
&& (s->vals[ivalue] != 0.0)
&& (!isnan_flags[ivalue]));
if (eval_flags2[ivalue])
all_false = FALSE;
else
all_true = FALSE;
}
scalar_free(s);
if (all_true || all_false) {
free(eval_flags2);
eval_flags2 = NULL;
}
/* Evaluate the then part */
s = NULL;
if (!all_false) {
s = eval_scalar(width, eval_flags2, n->expr[1], sym);
}
/* Evaluate the else part if needed - remember to invert the flags */
s2 = NULL;
if (!all_true && n->numargs > 2) {
if (eval_flags2 != NULL) {
for (ivalue=0; ivalue < width; ivalue++)
eval_flags2[ivalue] =
!eval_flags2[ivalue] && !isnan_flags[ivalue];
}
s2 = eval_scalar(width, eval_flags2, n->expr[2], sym);
if (eval_flags2 != NULL) {
for (ivalue=0; ivalue < width; ivalue++)
eval_flags2[ivalue] =
!eval_flags2[ivalue] && !isnan_flags[ivalue];
}
}
/* Make sure that we have an answer */
if (s == NULL) {
if (s2 != NULL) {
s = s2;
s2 = NULL;
}
else {
s = new_scalar(width);
for (ivalue=0; ivalue < width; ivalue++)
s->vals[ivalue] = 0.0;
}
}
/* Merge the results */
if (eval_flags2 != NULL) {
for (ivalue=0; ivalue < width; ivalue++) {
if (!eval_flags2[ivalue]) {
s->vals[ivalue] =
(n->numargs > 2 ? s2->vals[ivalue] : 0.0);
}
}
}
/* Mark appropriate invalid values */
for (ivalue=0; ivalue < width; ivalue++) {
if (isnan_flags[ivalue]) {
s->vals[ivalue] = value_for_illegal_operations;
}
}
/* Free things and return */
if (s2 != NULL) scalar_free(s2);
if (eval_flags2 != NULL) free(eval_flags2);
if (isnan_flags != NULL) free(isnan_flags);
return s;
default:
eval_error(n, "expected a scalar value");
/* NOTREACHED */
return 0;
}
}
/* Index into a vector */
scalar_t eval_index(int width, int *eval_flags,
node_t n, vector_t v, scalar_t i){
scalar_t s;
int idx;
int ivalue;
s = new_scalar(width);
for (ivalue=0; ivalue < width; ivalue++) {
if (eval_flags != NULL && !eval_flags[ivalue]) continue;
idx = SCALAR_ROUND(i->vals[ivalue]);
if (idx < 0 || idx >= v->len)
eval_error(n, "index out of bounds");
s->vals[ivalue] = v->el[idx]->vals[ivalue];
if (debug) (void) fprintf(stderr, "Index [%d] = %g\n",
idx, s->vals[ivalue]);
}
return s;
}
/* Perform a sum over the arguments */
scalar_t eval_sum(int width, int *eval_flags, node_t n, vector_t v)
{
int i, ivalue;
scalar_t result;
double value;
int found_invalid, found_valid;
result = new_scalar(width);
for (ivalue=0; ivalue < width; ivalue++) {
if (eval_flags != NULL && !eval_flags[ivalue]) continue;
result->vals[ivalue] = 0.0;
found_invalid = found_valid = FALSE;
for (i = 0; i < v->len; i++) {
value = v->el[i]->vals[ivalue];
if (value == INVALID_VALUE)
found_invalid = TRUE;
else {
result->vals[ivalue] += value;
found_valid = TRUE;
}
}
if ((found_invalid && propagate_nan) || !found_valid) {
result->vals[ivalue] = value_for_illegal_operations;
}
}
return result;
}
/* Perform a product over the arguments */
scalar_t eval_prod(int width, int *eval_flags, node_t n, vector_t v)
{
int i, ivalue;
scalar_t result;
double value;
int found_invalid, found_valid;
result = new_scalar(width);
for (ivalue=0; ivalue < width; ivalue++) {
if (eval_flags != NULL && !eval_flags[ivalue]) continue;
result->vals[ivalue] = 1.0;
found_invalid = found_valid = FALSE;
for (i = 0; i < v->len; i++) {
value = v->el[i]->vals[ivalue];
if (value == INVALID_VALUE)
found_invalid = TRUE;
else {
result->vals[ivalue] *= value;
found_valid = TRUE;
}
}
if ((found_invalid && propagate_nan) || !found_valid) {
result->vals[ivalue] = value_for_illegal_operations;
}
}
return result;
}
/* Find the maximum of a vector. Sign should be +1.0 for maxima search
and -1.0 for minima search.
type should be 0 for value and 1 for index */
scalar_t eval_max(int width, int *eval_flags,
node_t n, vector_t v, double sign, int type)
{
int i, ivalue;
scalar_t result;
double value, max, idx;
result = new_scalar(width);
for (ivalue=0; ivalue < width; ivalue++) {
if (eval_flags != NULL && !eval_flags[ivalue]) continue;
result->vals[ivalue] = max = INVALID_VALUE;
for (i = 0; i < v->len; i++) {
value = v->el[i]->vals[ivalue];
if (value != INVALID_VALUE) {
if (max == INVALID_VALUE || (sign*(value-max) > 0.0)) {
max = value;
idx = (double)i;
}
}
}
result->vals[ivalue] = (type == 0) ? max : idx;
}
return result;
}
/* Evaluate an expression in a vector context */
vector_t eval_vector(int width, int *eval_flags, node_t n, sym_t sym){
vector_t v, v2;
scalar_t s;
int ivalue, iel;
int *eval_flags2, *isnan_flags;
int all_true, all_false;
/* Check that node is of correct type */
if (node_is_scalar(n)) {
eval_error(n, "Expression is not a vector");
}
switch (n->type) {
case NODETYPE_EXPRLIST:
if (node_is_scalar(n->expr[0])) {
s = eval_scalar(width, eval_flags, n->expr[0], sym);
scalar_free(s);
}
else {
v = eval_vector(width, eval_flags, n->expr[0], sym);
vector_free(v);
}
return eval_vector(width, eval_flags, n->expr[1], sym);
case NODETYPE_ASSIGN:
v = eval_vector(width, eval_flags, n->expr[0], sym);
sym_set_vector(width, eval_flags, v, n->ident, sym);
return v;
case NODETYPE_LET:
if (ident_is_scalar(n->ident)) {
s = eval_scalar(width, eval_flags, n->expr[0], sym);
sym_set_scalar(width, eval_flags, s, n->ident, sym);
scalar_free(s);
} else {
v = eval_vector(width, eval_flags, n->expr[0], sym);
sym_set_vector(width, eval_flags, v, n->ident, sym);
vector_free(v);
}
v = eval_vector(width, eval_flags, n->expr[1], sym);
return v;
case NODETYPE_VEC2:
v = eval_vector(width, eval_flags, n->expr[0], sym);
s = eval_scalar(width, eval_flags, n->expr[1], sym);
vector_append(v, s);
scalar_free(s);
return v;
case NODETYPE_VEC1:
s = eval_scalar(width, eval_flags, n->expr[0], sym);
v = new_vector();
vector_append(v, s);
scalar_free(s);
return v;
case NODETYPE_GEN:
return gen_vector(width, eval_flags, n, sym);
case NODETYPE_RANGE:
return gen_range(width, eval_flags, n, sym);
case NODETYPE_IFELSE:
/* Do the test */
s = eval_scalar(width, eval_flags, n->expr[0], sym);
/* Set the eval flags based on the results */
eval_flags2 = malloc(sizeof(eval_flags[0]) * width);
isnan_flags = malloc(sizeof(eval_flags[0]) * width);
all_true = TRUE;
all_false = TRUE;
for (ivalue=0; ivalue < width; ivalue++) {
isnan_flags[ivalue] = (s->vals[ivalue] == INVALID_VALUE);
eval_flags2[ivalue] = ((eval_flags == NULL ? 1 : eval_flags[ivalue])
&& (s->vals[ivalue] != 0.0)
&& (!isnan_flags[ivalue]));
if (eval_flags2[ivalue])
all_false = FALSE;
else
all_true = FALSE;
}
scalar_free(s);
if (all_true || all_false) {
free(eval_flags2);
eval_flags2 = NULL;
}
/* Evaluate the then part */
v = NULL;
if (!all_false) {
v = eval_vector(width, eval_flags2, n->expr[1], sym);
}
/* Evaluate the else part if needed - remember to invert the flags */
v2 = NULL;
if (!all_true && n->numargs > 2) {
if (eval_flags2 != NULL) {
for (ivalue=0; ivalue < width; ivalue++)
eval_flags2[ivalue] =
!eval_flags2[ivalue] && !isnan_flags[ivalue];
}
v2 = eval_vector(width, eval_flags2, n->expr[2], sym);
if (eval_flags2 != NULL) {
for (ivalue=0; ivalue < width; ivalue++)
eval_flags2[ivalue] =
!eval_flags2[ivalue] && !isnan_flags[ivalue];
}
}
/* Make sure that we have an answer */
if (v == NULL) {
if (v2 != NULL) {
v = v2;
v2 = NULL;
}
else {
v = new_vector();
}
}
/* Merge the results */
if (v2 != NULL && v->len != v2->len) {
eval_error(n, "Vector expressions in if-else do not have the same length");
}
if (eval_flags2 != NULL) {
for (ivalue=0; ivalue < width; ivalue++) {
if (!eval_flags2[ivalue]) {
for (iel=0; iel < v->len; iel++) {
v->el[iel]->vals[ivalue] =
(n->numargs > 2 ? v2->el[iel]->vals[ivalue] : 0.0);
}
}
}
}
/* Mark appropriate invalid values */
for (ivalue=0; ivalue < width; ivalue++) {
if (isnan_flags[ivalue]) {
for (iel=0; iel < v->len; iel++) {
v->el[iel]->vals[ivalue] = value_for_illegal_operations;
}
}
}
/* Free things and return */
if (v2 != NULL) vector_free(v2);
if (eval_flags2 != NULL) free(eval_flags2);
if (isnan_flags != NULL) free(isnan_flags);
return v;
case NODETYPE_IDENT:
v = sym_lookup_vector(n->ident, sym);
if (v) {
vector_incr_ref(v);
return v;
}
/* fallthrough */
default:
/* XXX coerce scalar to vector! */
v = new_vector();
s = eval_scalar(width, eval_flags, n, sym);
vector_append(v, s);
scalar_free(s);
return v;
}
}
/* Generate a vector */
vector_t gen_vector(int width, int *eval_flags, node_t n, sym_t sym){
int i;
scalar_t value;
ident_t ident;
node_t expr;
vector_t v;
vector_t els;
ident = n->ident;
if (!ident_is_scalar(ident))
eval_error(n, "expected scalar (lowercase) index as 1st arg");
els = eval_vector(width, eval_flags, n->expr[0], sym);
expr = n->expr[1];
v = new_vector();
for (i = 0; i < els->len; i++) {
value = els->el[i];
scalar_incr_ref(value);
sym_set_scalar(width, eval_flags, value, ident, sym);
scalar_free(value);
value = eval_scalar(width, eval_flags, expr, sym);
vector_append(v, value);
scalar_free(value);
}
vector_free(els);
return v;
}
/* Implement a for loop */
scalar_t for_loop(int width, int *eval_flags, node_t n, sym_t sym){
int i, ivalue;
scalar_t value;
ident_t ident;
node_t expr;
vector_t els;
ident = n->ident;
if (!ident_is_scalar(ident))
eval_error(n, "expected scalar (lowercase) index as 1st arg");
els = eval_vector(width, eval_flags, n->expr[0], sym);
expr = n->expr[1];
for (i = 0; i < els->len; i++) {
if (debug) {
(void) fprintf(stderr, "For loop iteration %d\n", i);
}
value = els->el[i];
scalar_incr_ref(value);
sym_set_scalar(width, eval_flags, value, ident, sym);
scalar_free(value);
value = eval_scalar(width, eval_flags, expr, sym);
scalar_free(value);
}
vector_free(els);
value = new_scalar(width);
for (ivalue=0; ivalue < width; ivalue++) {
value->vals[ivalue] = (double) i;
}
return value;
}
vector_t gen_range(int width, int *eval_flags, node_t n, sym_t sym){
int i, ivalue;
scalar_t start;
scalar_t stop;
vector_t v;
int length;
v = new_vector();
start = eval_scalar(width, eval_flags, n->expr[0], sym);
stop = eval_scalar(width, eval_flags, n->expr[1], sym);
for (ivalue = 0; ivalue < width; ivalue++) {
if (eval_flags != NULL && !eval_flags[ivalue]) continue;
start->vals[ivalue] = SCALAR_ROUND(start->vals[ivalue]);
stop->vals[ivalue] = SCALAR_ROUND(stop->vals[ivalue]);
if (!(n->flags & RANGE_EXACT_LOWER))
start->vals[ivalue]++;
if (!(n->flags & RANGE_EXACT_UPPER))
stop->vals[ivalue]--;
if (ivalue == 0) {
length = stop->vals[ivalue] - start->vals[ivalue];
}
else if (length != (int) (stop->vals[ivalue] - start->vals[ivalue])) {
eval_error(n, "Vectors must have same size in vector generator");
}
}
length++;
scalar_free(stop);
for (i = 0; i < length ; i++) {
stop = new_scalar(width);
for (ivalue = 0; ivalue < width; ivalue++) {
if (eval_flags != NULL && !eval_flags[ivalue]) continue;
stop->vals[ivalue] = start->vals[ivalue] + i;
if (debug) {
(void) fprintf(stderr, "Range %d -> %d\n",
i, (int) stop->vals[ivalue]);
}
}
vector_append(v, stop);
scalar_free(stop);
}
scalar_free(start);
return v;
}
|