File: gaussian.c

package info (click to toggle)
minc 2.1.10-1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 8,160 kB
  • sloc: ansic: 82,507; sh: 10,666; yacc: 1,187; perl: 612; makefile: 586; lex: 319
file content (280 lines) | stat: -rw-r--r-- 7,746 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
/* ----------------------------------------------------------------------------
@COPYRIGHT  :
              Copyright 1993,1994,1995 David MacDonald,
              McConnell Brain Imaging Centre,
              Montreal Neurological Institute, McGill University.
              Permission to use, copy, modify, and distribute this
              software and its documentation for any purpose and without
              fee is hereby granted, provided that the above copyright
              notice appear in all copies.  The author and McGill University
              make no representations about the suitability of this
              software for any purpose.  It is provided "as is" without
              express or implied warranty.
---------------------------------------------------------------------------- */

#include  <internal_volume_io.h>

/* ----------------------------- MNI Header -----------------------------------
@NAME       : scaled_maximal_pivoting_gaussian_elimination
@INPUT      : n                 size of matrix, n by n
              a                 matrix
              n_values          number of values to solve for
@OUTPUT     : row               permutation array filled in by this function
              solution          on input, the values, on output the solution,
                                size n by n_values
@RETURNS    : TRUE if successful
@DESCRIPTION: Performs scaled maximal pivoting gaussian elimination as a
              numerically robust method to solve systems of linear equations.
@METHOD     : 
@GLOBALS    : 
@CALLS      : 
@CREATED    : May 10, 1995    David MacDonald
@MODIFIED   : 
---------------------------------------------------------------------------- */

static  BOOLEAN  scaled_maximal_pivoting_gaussian_elimination(
    int   n,
    int   row[],
    Real  **a,
    int   n_values,
    Real  **solution )
{
    int       i, j, k, p, v, tmp;
    Real      *s, val, best_val, m, scale_factor;
    BOOLEAN   success;

    ALLOC( s, n );

    for_less( i, 0, n )
        row[i] = i;

    for_less( i, 0, n )
    {
        s[i] = FABS( a[i][0] );
        for_less( j, 1, n )
        {
            if( FABS(a[i][j]) > s[i] )
               s[i] = FABS(a[i][j]);
        }

        if( s[i] == 0.0 )
        {
            FREE( s );

            return( FALSE );
        }
    }

    success = TRUE;

    for_less( i, 0, n-1 )
    {
        p = i;
        best_val = a[row[i]][i] / s[row[i]];
        best_val = FABS( best_val );
        for_less( j, i+1, n )
        {
            val = a[row[j]][i] / s[row[j]];
            val = FABS( val );
            if( val > best_val )
            {
                best_val = val;
                p = j;
            }
        }

        if( a[row[p]][i] == 0.0 )
        {
            success = FALSE;
            break;
        }

        if( i != p )
        {
            tmp = row[i];
            row[i] = row[p];
            row[p] = tmp;
        }

        for_less( j, i+1, n )
        {
            if( a[row[i]][i] == 0.0 )
            {
                success = FALSE;
                break;
            }

            m = a[row[j]][i] / a[row[i]][i];
            for_less( k, i+1, n )
                a[row[j]][k] -= m * a[row[i]][k];
            for_less( v, 0, n_values )
                solution[row[j]][v] -= m * solution[row[i]][v];
        }

        if( !success )
            break;
    }

    if( success && a[row[n-1]][n-1] == 0.0 )
        success = FALSE;

    if( success )
    {
        for( i = n-1;  i >= 0;  --i )
        {
            for_less( j, i+1, n )
            {
                scale_factor = a[row[i]][j];
                for_less( v, 0, n_values )
                    solution[row[i]][v] -= scale_factor * solution[row[j]][v];
            }

            for_less( v, 0, n_values )
                solution[row[i]][v] /= a[row[i]][i];
        }
    }

    FREE( s );

    return( success );
}

/* ----------------------------- MNI Header -----------------------------------
@NAME       : scaled_maximal_pivoting_gaussian_elimination_real
@INPUT      : n
              coefs
              n_values
              values
@OUTPUT     : values has the solution on output
@RETURNS    : TRUE if successful
@DESCRIPTION: Performs gaussian elimination on a type-Real matrix, first
              copying it into temporary storage, which is modified as
              the gaussian elimination is performed.
@METHOD     : 
@GLOBALS    : 
@CALLS      : 
@CREATED    : May 10, 1995    David MacDonald
@MODIFIED   : 
---------------------------------------------------------------------------- */

static BOOLEAN scaled_maximal_pivoting_gaussian_elimination_real(
    int   n,
    Real  **coefs,
    int   n_values,
    Real  **values )
{
    int       i, j, v, *row;
    Real      **a, **solution;
    BOOLEAN   success;

    ALLOC( row, n );
    ALLOC2D( a, n, n );
    ALLOC2D( solution, n, n_values );

    for_less( i, 0, n )
    {
        for_less( j, 0, n )
            a[i][j] = coefs[i][j];
        for_less( v, 0, n_values )
            solution[i][v] = values[v][i];
    }

    success = scaled_maximal_pivoting_gaussian_elimination( n, row, a, n_values,
                                                            solution );

    if( success )
    {
        for_less( i, 0, n )
        {
            for_less( v, 0, n_values )
                values[v][i] = solution[row[i]][v];
        }
    }

    FREE2D( a );
    FREE2D( solution );
    FREE( row );

    return( success );
}

/* ----------------------------- MNI Header -----------------------------------
@NAME       : solve_linear_system
@INPUT      : n
              coefs      - n by n matrix
              values     - size n list
@OUTPUT     : solution   - size n list
@RETURNS    : TRUE if successful
@DESCRIPTION: Solves a linear system of equations, finding the solution
                                                         t          t
              vector that satisfies  [coefs] * [solution] = [values]
@METHOD     : 
@GLOBALS    : 
@CALLS      : 
@CREATED    : May 10, 1995    David MacDonald
@MODIFIED   : 
---------------------------------------------------------------------------- */

VIOAPI  BOOLEAN  solve_linear_system(
    int   n,
    Real  **coefs,
    Real  values[],
    Real  solution[] )
{
    int       i;

    for_less( i, 0, n )
        solution[i] = values[i];

    return( scaled_maximal_pivoting_gaussian_elimination_real( n, coefs, 1,
                                                               &solution ) );
}

/* ----------------------------- MNI Header -----------------------------------
@NAME       : invert_square_matrix
@INPUT      : n
              matrix   - n by n matrix
@OUTPUT     : inverse
@RETURNS    : TRUE if successful
@DESCRIPTION: Computes the inverse of a square matrix.
@METHOD     : 
@GLOBALS    : 
@CALLS      : 
@CREATED    : May 10, 1995    David MacDonald
@MODIFIED   : 
---------------------------------------------------------------------------- */

VIOAPI  BOOLEAN  invert_square_matrix(
    int   n,
    Real  **matrix,
    Real  **inverse )
{
    Real      tmp;
    BOOLEAN   success;
    int       i, j;

    for_less( i, 0, n )
    {
        for_less( j, 0, n )
            inverse[i][j] = 0.0;
        inverse[i][i] = 1.0;
    }

    success = scaled_maximal_pivoting_gaussian_elimination_real( n, matrix,
                                                                 n, inverse );

    if( success )
    {
        for_less( i, 0, n-1 )
        {
            for_less( j, i+1, n )
            {
                tmp = inverse[i][j];
                inverse[i][j] = inverse[j][i];
                inverse[j][i] = tmp;
            }
        }
    }

    return( success );
}