1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
|
/* ----------------------------------------------------------------------------
@COPYRIGHT :
Copyright 1993,1994,1995 David MacDonald,
McConnell Brain Imaging Centre,
Montreal Neurological Institute, McGill University.
Permission to use, copy, modify, and distribute this
software and its documentation for any purpose and without
fee is hereby granted, provided that the above copyright
notice appear in all copies. The author and McGill University
make no representations about the suitability of this
software for any purpose. It is provided "as is" without
express or implied warranty.
---------------------------------------------------------------------------- */
#include <internal_volume_io.h>
#define STEP_RATIO 1.0
/* ----------------------------- MNI Header -----------------------------------
@NAME : newton_root_find
@INPUT : n_dimensions - dimensionality of domain and range
function - function to find the solution to
- takes as arguments the function_data
pointer, the position to evaluate,
and passes back the values[n_dim]
and derivatives[n_dim][n_dim]
function_data
initial_guess[n_dimensions]
desired_values[n_dimensions]
function_tolerance
delta_tolerance
max_iterations
@OUTPUT :
solution[n_dimensions]
@RETURNS : TRUE if successful
@DESCRIPTION: Performs a newton root find of a function by taking steps of
x' = (desired - f(x)) / grad(f(x)),
where x starts at initial_guess and
is updated until the f(x) is close to zero. x is passed back
in solution.
@METHOD :
@GLOBALS :
@CALLS :
@CREATED : May 10, 1995 David MacDonald
@MODIFIED :
---------------------------------------------------------------------------- */
VIOAPI BOOLEAN newton_root_find(
int n_dimensions,
void (*function) ( void *, Real [], Real [], Real ** ),
void *function_data,
Real initial_guess[],
Real desired_values[],
Real solution[],
Real function_tolerance,
Real delta_tolerance,
int max_iterations )
{
int iter, dim;
Real *values, **derivatives, *delta, error, best_error, *position;
Real step_size;
BOOLEAN success;
ALLOC( position, n_dimensions );
ALLOC( values, n_dimensions );
ALLOC( delta, n_dimensions );
ALLOC2D( derivatives, n_dimensions, n_dimensions );
/*--- initialize function position to the initial guess */
for_less( dim, 0, n_dimensions )
position[dim] = initial_guess[dim];
iter = 0;
success = FALSE;
best_error = 0.0;
while( max_iterations < 0 || iter < max_iterations )
{
++iter;
/*--- evaluate the function and derivatives */
(*function) ( function_data, position, values, derivatives );
/*--- compute the error between the desired values and the current */
error = 0.0;
for_less( dim, 0, n_dimensions )
{
values[dim] = desired_values[dim] - values[dim];
error += FABS( values[dim] );
}
/*--- if this is best so far, record it */
if( iter == 1 || error < best_error )
{
best_error = error;
for_less( dim, 0, n_dimensions )
solution[dim] = position[dim];
if( error < function_tolerance )
{
success = TRUE;
break;
}
}
/*--- find the step (delta) to solve the linear system of function
value and derivatives */
if( !solve_linear_system( n_dimensions, derivatives, values, delta ) )
break;
/*--- compute the size of the step to see if it is small */
step_size = 0.0;
for_less( dim, 0, n_dimensions )
{
position[dim] += STEP_RATIO * delta[dim];
step_size += FABS( delta[dim] );
}
if( step_size < delta_tolerance )
{
success = TRUE;
break;
}
}
/*--- free memory */
FREE( values );
FREE( delta );
FREE2D( derivatives );
FREE( position );
return( success );
}
|