1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
|
/* ----------------------------------------------------------------------------
@COPYRIGHT :
Copyright 1993,1994,1995 David MacDonald,
McConnell Brain Imaging Centre,
Montreal Neurological Institute, McGill University.
Permission to use, copy, modify, and distribute this
software and its documentation for any purpose and without
fee is hereby granted, provided that the above copyright
notice appear in all copies. The author and McGill University
make no representations about the suitability of this
software for any purpose. It is provided "as is" without
express or implied warranty.
---------------------------------------------------------------------------- */
#include <internal_volume_io.h>
/*--- Weighting functions which define the splines, all of which are
interpolation splines, with the exception of the quadratic spline */
static Real constant_coefs[1][1] = { { 1.0 } };
static Real linear_coefs[2][2] = {
{ 1.0, 0.0 },
{ -1.0, 1.0 }
};
static Real quadratic_coefs[3][3] = {
{ 0.5, 0.5, 0.0 },
{ -1.0, 1.0, 0.0 },
{ 0.5, -1.0, 0.5 }
};
static Real cubic_coefs[4][4] = {
{ 0.0, 1.0, 0.0, 0.0 },
{ -0.5, 0.0, 0.5, 0.0 },
{ 1.0, -2.5, 2.0, -0.5 },
{ -0.5, 1.5, -1.5, 0.5 }
};
/* ----------------------------- MNI Header -----------------------------------
@NAME : get_linear_spline_coefs
@INPUT :
@OUTPUT : coefs 2 by 2 array of coefficients
@RETURNS :
@DESCRIPTION: Passes back the basis matrix of the linear spline.
@METHOD :
@GLOBALS :
@CALLS :
@CREATED : Jan 21, 1995 David MacDonald
@MODIFIED :
---------------------------------------------------------------------------- */
VIOAPI void get_linear_spline_coefs(
Real **coefs )
{
int i, j;
for_less( i, 0, 2 )
for_less( j, 0, 2 )
coefs[i][j] = linear_coefs[i][j];
}
/* ----------------------------- MNI Header -----------------------------------
@NAME : get_quadratic_spline_coefs
@INPUT :
@OUTPUT : coefs 3 by 3 array of coefficients
@RETURNS :
@DESCRIPTION: Passes back the basis matrix of the quadratic spline.
@METHOD :
@GLOBALS :
@CALLS :
@CREATED : Jan 21, 1995 David MacDonald
@MODIFIED :
---------------------------------------------------------------------------- */
VIOAPI void get_quadratic_spline_coefs(
Real **coefs )
{
int i, j;
for_less( i, 0, 3 )
for_less( j, 0, 3 )
coefs[i][j] = quadratic_coefs[i][j];
}
/* ----------------------------- MNI Header -----------------------------------
@NAME : get_cubic_spline_coefs
@INPUT :
@OUTPUT : coefs 4 by 4 array of coefficients
@RETURNS :
@DESCRIPTION: Passes back the basis matrix of the cubic interpolating
(Catmull-Romm) spline.
@METHOD :
@GLOBALS :
@CALLS :
@CREATED : Jan 21, 1995 David MacDonald
@MODIFIED :
---------------------------------------------------------------------------- */
VIOAPI void get_cubic_spline_coefs(
Real **coefs )
{
int i, j;
for_less( i, 0, 4 )
for_less( j, 0, 4 )
coefs[i][j] = cubic_coefs[i][j];
}
/* ----------------------------- MNI Header -----------------------------------
@NAME : cubic_interpolate
@INPUT : u - position to evaluate, between 0 and 1
v0 - four control vertices
v1
v2
v3
@OUTPUT :
@RETURNS : interpolated value
@DESCRIPTION: Performs cubic interpolation, where a value of u = 0 returns
v1, a value of u = 1 returns v2, and intermediate values
smoothly interpolate.
@METHOD :
@GLOBALS :
@CALLS :
@CREATED : Jan 21, 1995 David MacDonald
@MODIFIED :
---------------------------------------------------------------------------- */
VIOAPI Real cubic_interpolate(
Real u,
Real v0,
Real v1,
Real v2,
Real v3 )
{
Real coefs[4], value;
coefs[0] = v0;
coefs[1] = v1;
coefs[2] = v2;
coefs[3] = v3;
evaluate_univariate_interpolating_spline( u, 4, coefs, 0, &value );
return( value );
}
/* ----------------------------- MNI Header -----------------------------------
@NAME : evaluate_univariate_interpolating_spline
@INPUT : u
degree - 2,3,4 for linear, quadratic, or cubic
coefs[degree] - control vertices
n_derivs - number of derivatives to compute
@OUTPUT : derivs - 1 + n_derivs values and derivatives
@RETURNS :
@DESCRIPTION: Passes back the interpolated value and n_derivs derivatives
in the derivs array.
@METHOD :
@GLOBALS :
@CALLS :
@CREATED : Jan 21, 1995 David MacDonald
@MODIFIED :
---------------------------------------------------------------------------- */
VIOAPI void evaluate_univariate_interpolating_spline(
Real u,
int degree,
Real coefs[],
int n_derivs,
Real derivs[] )
{
evaluate_interpolating_spline( 1, &u, degree, 1, coefs, n_derivs, derivs );
}
/* ----------------------------- MNI Header -----------------------------------
@NAME : evaluate_bivariate_interpolating_spline
@INPUT : u - position to evaluate
v
degree - 2,3,4 for linear, quadratic, or cubic
coefs - control vertices, size degree * degree
n_derivs - number of derivatives to compute
@OUTPUT : derivs - (1 + n_derivs) * (1 + n_derivs)
values and derivatives
@RETURNS :
@DESCRIPTION: Passes back the interpolated value and derivatives
in the derivs array. derivs is a 1D array that is conceptually
2 dimensional, indexed by dx and dy, where dx and dy range
from 0 to n_derivs, indicating which value or derivative.
For example 0,0 refers to the interpolated value
whereas 1,0 refers to the derivative of the function wrt u.
@METHOD :
@GLOBALS :
@CALLS :
@CREATED : Jan 21, 1995 David MacDonald
@MODIFIED :
---------------------------------------------------------------------------- */
VIOAPI void evaluate_bivariate_interpolating_spline(
Real u,
Real v,
int degree,
Real coefs[],
int n_derivs,
Real derivs[] )
{
Real positions[2];
positions[0] = u;
positions[1] = v;
evaluate_interpolating_spline( 2, positions, degree, 1, coefs,
n_derivs, derivs );
}
/* ----------------------------- MNI Header -----------------------------------
@NAME : evaluate_trivariate_interpolating_spline
@INPUT : u - position to evaluate
v
w
degree - 2,3,4 for linear, quadratic, or cubic
coefs - control vertices, size degree * degree * degree
n_derivs - number of derivatives to compute
@OUTPUT : derivs - (1 + n_derivs) * (1 + n_derivs) * (1 + n_derivs)
values and derivatives
@RETURNS :
@DESCRIPTION: Passes back the interpolated value and derivatives
in the derivs array. derivs is a 1D array that is conceptually
3 dimensional, indexed by dx, dy, and dz, where dx, dy, and dz
each range from 0 to n_derivs, indicating which value or
derivative. For example 0,0,0 refers to the interpolated value
whereas 1,0,1 refers to the derivative of the function wrt u and
w.
@METHOD :
@GLOBALS :
@CALLS :
@CREATED : Jan 21, 1995 David MacDonald
@MODIFIED :
---------------------------------------------------------------------------- */
VIOAPI void evaluate_trivariate_interpolating_spline(
Real u,
Real v,
Real w,
int degree,
Real coefs[],
int n_derivs,
Real derivs[] )
{
Real positions[3];
positions[0] = u;
positions[1] = v;
positions[2] = w;
evaluate_interpolating_spline( 3, positions, degree, 1, coefs,
n_derivs, derivs );
}
#define MAX_DIMS 100
/* ----------------------------- MNI Header -----------------------------------
@NAME : evaluate_interpolating_spline
@INPUT : n_dims - dimensionality of the spline, >= 1
parameters - u, v, w,... position of spline
degree - 2,3,4 for linear, quadratic, or cubic
n_values - number of values to interpolate at the point
coefs - [n_values]*[degree]*[degree]... control vertices
n_derivs - number of derivatives to compute
@OUTPUT : derivs - (n_values) *
(1 + n_derivs) * (1 + n_derivs) * ...
values and derivatives
@RETURNS :
@DESCRIPTION: Passes back the interpolated value and derivatives
in the derivs array. derivs is a 1D array that is conceptually
multi-dimensional, indexed by v, dx, dy, dz, etc., where
dx, dy, dz, etc. each range from 0 to n_derivs, and v ranges
from 0 to n_values-1.
For example, if n_dims is 3 and n_values is 4, then the
4D index of derivs[2,0,0,0] refers to the interpolated value
of the 3rd component of the 4 valued function. derivs[1,0,1,1]
refers to the derivative of the 2nd component of the 4 valued
function with respect to v and w.
@METHOD :
@GLOBALS :
@CALLS :
@CREATED : Jan 21, 1995 David MacDonald
@MODIFIED :
---------------------------------------------------------------------------- */
VIOAPI void evaluate_interpolating_spline(
int n_dims,
Real parameters[],
int degree,
int n_values,
Real coefs[],
int n_derivs,
Real derivs[] )
{
int d, degrees[MAX_DIMS], n_derivs_list[MAX_DIMS];
Real *bases[MAX_DIMS];
if( degree < 1 || degree > 4 )
{
print_error( "evaluate_interpolating_spline: invalid degree: %d\n",
degree );
return;
}
if( n_dims < 1 || n_dims > MAX_DIMS )
{
print_error( "evaluate_interpolating_spline: invalid n dims: %d\n",
n_dims );
return;
}
switch( degree )
{
case 1: bases[0] = &constant_coefs[0][0]; break;
case 2: bases[0] = &linear_coefs[0][0]; break;
case 3: bases[0] = &quadratic_coefs[0][0]; break;
case 4: bases[0] = &cubic_coefs[0][0]; break;
}
for_less( d, 1, n_dims )
bases[d] = bases[0];
for_less( d, 0, n_dims )
{
degrees[d] = degree;
n_derivs_list[d] = n_derivs;
}
spline_tensor_product( n_dims, parameters, degrees, bases, n_values, coefs,
n_derivs_list, derivs );
}
|