File: tensors.c

package info (click to toggle)
minc 2.1.10-1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 8,160 kB
  • sloc: ansic: 82,507; sh: 10,666; yacc: 1,187; perl: 612; makefile: 586; lex: 319
file content (339 lines) | stat: -rwxr-xr-x 9,450 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
/* ----------------------------------------------------------------------------
@COPYRIGHT  :
              Copyright 1993,1994,1995 David MacDonald,
              McConnell Brain Imaging Centre,
              Montreal Neurological Institute, McGill University.
              Permission to use, copy, modify, and distribute this
              software and its documentation for any purpose and without
              fee is hereby granted, provided that the above copyright
              notice appear in all copies.  The author and McGill University
              make no representations about the suitability of this
              software for any purpose.  It is provided "as is" without
              express or implied warranty.
---------------------------------------------------------------------------- */

#include  <internal_volume_io.h>

/* ----------------------------- MNI Header -----------------------------------
@NAME       : multiply_basis_matrices
@INPUT      : n_derivs
              n_degs
              m1
              m2
@OUTPUT     : prod
@RETURNS    : 
@DESCRIPTION: Performs a matrix multiply of the basis matrix with the
              powers of the u's positions.  Steps through the
              matrices in the appropriate strides.  Could use the more
              general multiply_matrices below, but is done this way for speed.
@METHOD     : 
@GLOBALS    : 
@CALLS      : 
@CREATED    : Jan 21, 1995    David MacDonald
@MODIFIED   : 
---------------------------------------------------------------------------- */

static void multiply_basis_matrices(
    int    n_derivs,
    int    n_degs,
    Real   m1[],
    Real   m2[],
    Real   prod[] )
{
    int   i, j, k, m2_inc;
    Real  *m1_ptr, *m1_ptr1;
    Real  *m2_ptr;
    Real  sum, *prod_ptr;

    m1_ptr = m1;
    prod_ptr = prod;
    m2_inc = 1 - n_degs * n_degs;
    for_less( i, 0, n_derivs )
    {
        m2_ptr = m2;
        for_less( j, 0, n_degs )
        {
            sum = 0.0;
            m1_ptr1 = m1_ptr;
            for_less( k, 0, n_degs )
            {
                sum += (*m1_ptr1) * (*m2_ptr);
                ++m1_ptr1;
                m2_ptr += n_degs;
            }
            m2_ptr += m2_inc;
            *prod_ptr = sum;
            ++prod_ptr;
        }

        m1_ptr += n_degs;
    }
}

/* ----------------------------- MNI Header -----------------------------------
@NAME       : multiply_matrices
@INPUT      : x1           - x size of first matrix
              y1           - y size of first matrix
              m1           - first matrix
              sa1          - x stride of first matrix
              sb1          - y stride of first matrix
            : y2           - y size of second matrix (x size must be y1)
              m2           - second matrix
              sa2          - x stride of second matrix
              sb2          - y stride of second matrix
              sap          - x stride of product matrix
              sbp          - y stride of product matrix
@OUTPUT     : prod         - product of m1 * m2
@RETURNS    : 
@DESCRIPTION: Multiplies the two matrices m1 and m2, placing the results in
              prod.
@METHOD     : 
@GLOBALS    : 
@CALLS      : 
@CREATED    : Jan. 21, 1995    David MacDonald
@MODIFIED   : 
---------------------------------------------------------------------------- */

static void multiply_matrices(
    int    x1,
    int    y1,
    Real   m1[],
    int    sa1,
    int    sb1,
    int    y2,
    Real   m2[],
    int    sa2,
    int    sb2,
    Real   prod[],
    int    sap,
    int    sbp )
{
    int   i, j, k;
    Real  *m1_ptr, *m1_ptr1, *m2_ptr;
    Real  sum, *prod_ptr;

    m1_ptr = m1;
    prod_ptr = prod;
    sb2 -= y1 * sa2;
    sap -= y2 * sbp;
    for_less( i, 0, x1 )
    {
        m2_ptr = m2;
        for_less( j, 0, y2 )
        {
            sum = 0.0;
            m1_ptr1 = m1_ptr;
            for_less( k, 0, y1 )
            {
                sum += (*m1_ptr1) * (*m2_ptr);
                m1_ptr1 += sb1;
                m2_ptr += sa2;
            }

            *prod_ptr = sum;

            prod_ptr += sbp;
            m2_ptr += sb2;
        }
        m1_ptr += sa1;
        prod_ptr += sap;
    }
}

#define  MAX_DEGREE        4
#define  MAX_DIMS          10
#define  MAX_TOTAL_VALUES  4000

/* ----------------------------- MNI Header -----------------------------------
@NAME       : spline_tensor_product
@INPUT      : n_dims
              positions[n_dims]
              degrees[n_dims]
              bases[n_dims][degrees[dim]*degrees[dim]]
              n_values
              coefs [n_values*degrees[0]*degrees[1]*...]
              n_derivs[n_dims]
@OUTPUT     : results[n_values*n_derivs[0]*n_derivs[1]*...]
@RETURNS    : 
@DESCRIPTION: Performs the spline tensor product necessary to evaluate.
              Takes as input the number of dimensions, the position to
              evaluate, the basis matrices defining the interpolation method,
              and the control vertices (coefs).  The resulting values and
              derivatives are placed in the 1D array results, conceptually as a
              (1+n_dims)-D array.
@METHOD     : 
@GLOBALS    : 
@CALLS      : 
@CREATED    : Jan 21, 1995    David MacDonald
@MODIFIED   : 
---------------------------------------------------------------------------- */

VIOAPI  void  spline_tensor_product(
    int     n_dims,
    Real    positions[],
    int     degrees[],
    Real    *bases[],
    int     n_values,
    Real    coefs[],
    int     n_derivs[],
    Real    results[] )
{
    int       deriv, d, k, total_values, src;
    int       ind, prev_ind, max_degree, n_derivs_plus_1, deg;
    int       static_indices[MAX_DIMS];
    int       *indices, total_derivs;
    Real      *input_coefs, u_power, u;
    Real      static_us[MAX_DEGREE*MAX_DEGREE];
    Real      static_weights[MAX_DEGREE*MAX_DEGREE];
    Real      *us, *weights;
    Real      *tmp_results[2], *r;
    Real      static_tmp_results[2][MAX_TOTAL_VALUES];
    BOOLEAN   results_alloced;

    /*--- check arguments */

    max_degree = 2;
    total_values = n_values;
    total_derivs = 0;
    for_less( d, 0, n_dims )
    {
        if( degrees[d] < 2  )
        {
            print_error(
                  "spline_tensor_product: Degree %d must be greater than 1.\n",
                  degrees[d] );
            return;
        }
        if( degrees[d] > max_degree )
            max_degree = degrees[d];
        if( n_derivs[d] > total_derivs )
            total_derivs = n_derivs[d];

        total_values *= degrees[d];
    }

    /*--- determine if fixed size storage is large enough,
          if not allocate memory */

    if( n_dims > MAX_DIMS )
    {
        ALLOC( indices, n_dims );
    }
    else
    {
        indices = static_indices;
    }

    if( max_degree > MAX_DEGREE )
    {
        ALLOC( us, max_degree * max_degree );
        ALLOC( weights, max_degree * max_degree );
    }
    else
    {
        us = static_us;
        weights = static_weights;
    }

    if( total_values > MAX_TOTAL_VALUES )
    {
        ALLOC( tmp_results[0], total_values );
        ALLOC( tmp_results[1], total_values );
        results_alloced = TRUE;
    }
    else
    {
        tmp_results[0] = static_tmp_results[0];
        tmp_results[1] = static_tmp_results[1];
        results_alloced = FALSE;
    }

    input_coefs = coefs;

    src = 0;

    /*--- do each dimension */

    for_less( d, 0, n_dims )
    {
        deg = degrees[d];
        n_derivs_plus_1 = 1 + n_derivs[d];

        /*--- fill in the top row of matrix of powers of u
              = [1 u u^2 u^3 ...] for evaluating values */

        u = positions[d];
        u_power = 1.0;
        us[0] = 1.0;
        for_less( k, 1, deg )
        {
            u_power *= u;
            us[k] = u_power;
        }

        /*--- fill in the rest of the n_derivs_plus_1 by degrees[d] matrix:
              1  u   u^2  u^3 ...
              0  1  2u   3u^2 ...
              0  0   2   6u   ...
                    ...             */

        ind = deg;
        for_less( deriv, 1, n_derivs_plus_1 )
        {
            for_less( k, 0, deriv )
            {
                us[ind] = 0.0;
                ++ind;
            }
   
            prev_ind = IJ( deriv-1, deriv-1, deg );
            for_less( k, deriv, deg )
            {
                us[ind] = us[prev_ind] * (Real) k;
                ++ind;
                ++prev_ind;
            }
        }

        /*--- multiply the u's matrix by the spline basis to create weights */

        multiply_basis_matrices( n_derivs_plus_1, deg, us, bases[d], weights );

        total_values /= deg;

        if( d == n_dims-1 )
            r = results;
        else
            r = tmp_results[1-src];

        /*--- multiply coefficient weights by the coefficients */

        multiply_matrices( n_derivs_plus_1, deg, weights, deg, 1,
                           total_values, input_coefs, total_values, 1,
                           r, 1, n_derivs_plus_1 );

        src = 1 - src;
        input_coefs = tmp_results[src];

        total_values *= n_derivs_plus_1;
    }

    /*--- check to free memory */

    if( n_dims > MAX_DIMS )
    {
        FREE( indices );
    }

    if( max_degree > MAX_DEGREE )
    {
        FREE( us );
        FREE( weights );
    }

    if( results_alloced )
    {
        FREE( tmp_results[0] );
        FREE( tmp_results[1] );
    }
}