File: grid_transforms.c

package info (click to toggle)
minc 2.1.10-1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 8,160 kB
  • sloc: ansic: 82,507; sh: 10,666; yacc: 1,187; perl: 612; makefile: 586; lex: 319
file content (570 lines) | stat: -rw-r--r-- 18,154 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
/* ----------------------------------------------------------------------------
@COPYRIGHT  :
              Copyright 1993,1994,1995 David MacDonald,
              McConnell Brain Imaging Centre,
              Montreal Neurological Institute, McGill University.
              Permission to use, copy, modify, and distribute this
              software and its documentation for any purpose and without
              fee is hereby granted, provided that the above copyright
              notice appear in all copies.  The author and McGill University
              make no representations about the suitability of this
              software for any purpose.  It is provided "as is" without
              express or implied warranty.
---------------------------------------------------------------------------- */

#include  <internal_volume_io.h>

#define   DEGREES_CONTINUITY         2    /* -1 = Nearest; 0 = Linear; 1 = Quadratic; 2 = Cubic interpolation */
#define   SPLINE_DEGREE         ((DEGREES_CONTINUITY) + 2)

#define   N_COMPONENTS   N_DIMENSIONS /* displacement vector has 3 components */

#define   FOUR_DIMS      4

#define   INVERSE_FUNCTION_TOLERANCE     0.01
#define   INVERSE_DELTA_TOLERANCE        1.0e-5

#define   MAX_INVERSE_ITERATIONS         20

static void   evaluate_grid_volume(
    Volume         volume,
    Real           x,
    Real           y,
    Real           z,
    int            degrees_continuity,
    Real           values[],
    Real           deriv_x[],
    Real           deriv_y[],
    Real           deriv_z[] );

/* ----------------------------- MNI Header -----------------------------------
@NAME       : grid_transform_point
@INPUT      : transform
              x
              y
              z
@OUTPUT     : x_transformed
              y_transformed
              z_transformed
@RETURNS    : 
@DESCRIPTION: Applies a grid transform to the point
@METHOD     : 
@GLOBALS    : 
@CALLS      : 
@CREATED    : Feb. 21, 1995    David MacDonald
@MODIFIED   : 
---------------------------------------------------------------------------- */

VIOAPI  void  grid_transform_point(
    General_transform   *transform,
    Real                x,
    Real                y,
    Real                z,
    Real                *x_transformed,
    Real                *y_transformed,
    Real                *z_transformed )
{
    Real    displacements[N_COMPONENTS];
    Volume  volume;

    /* --- the volume that defines the transform is an offset vector,
           so evaluate the volume at the given position and add the
           resulting offset to the given position */

    volume = (Volume) transform->displacement_volume;

    evaluate_grid_volume( volume, x, y, z, DEGREES_CONTINUITY, displacements,
                          NULL, NULL, NULL );

    *x_transformed = x + displacements[X];
    *y_transformed = y + displacements[Y];
    *z_transformed = z + displacements[Z];
}

#ifdef USE_NEWTONS_METHOD
/* ----------------------------- MNI Header -----------------------------------
@NAME       : forward_function
@INPUT      : function_data  - contains transform info
              parameters     - x,y,z position
@OUTPUT     : values         - where x,y,z, maps to
              derivatives    - the 3 by 3 derivatives of the mapping
@RETURNS    : 
@DESCRIPTION: This function does the same thing as grid_transform_point(),
              but also gets derivatives.  This function is passed to the
              newton function solution routine to perform the inverse mapping
              of the grid transformation.
@METHOD     : 
@GLOBALS    : 
@CALLS      : 
@CREATED    : Feb.   , 1995    David MacDonald
@MODIFIED   : 
---------------------------------------------------------------------------- */

private  void  forward_function(
    void   *function_data,
    Real   parameters[],
    Real   values[],
    Real   **derivatives )
{
    int                c;
    General_transform  *transform;
    Real               deriv_x[N_COMPONENTS], deriv_y[N_COMPONENTS];
    Real               deriv_z[N_COMPONENTS];
    Volume             volume;

    transform = (General_transform *) function_data;

    /* --- store the offset vector in values[0-2] */

    volume = transform->displacement_volume;

    evaluate_grid_volume( volume, parameters[X], parameters[Y], parameters[Z],
                          DEGREES_CONTINUITY, values,
                          deriv_x, deriv_y, deriv_z );

    for_less( c, 0, N_COMPONENTS )
    {
        values[c] += parameters[c];   /* to get x',y',z', add offset to x,y,z */

        /*--- given the derivatives of the offset, compute the
              derivatives of (x,y,z) + offset, with respect to x,y,z */

        derivatives[c][X] = deriv_x[c];
        derivatives[c][Y] = deriv_y[c];
        derivatives[c][Z] = deriv_z[c];

        derivatives[c][c] += 1.0;    /* deriv of (x,y,z) w.r.t. x or y or z  */
    }
}

/* ----------------------------- MNI Header -----------------------------------
@NAME       : grid_inverse_transform_point
@INPUT      : transform
              x
              y
              z
@OUTPUT     : x_transformed
              y_transformed
              z_transformed
@RETURNS    : 
@DESCRIPTION: Applies the inverse grid transform to the point.  This is done
              by using newton-rhapson steps to find the point which maps to
              the parameters (x,y,z).
@METHOD     : 
@GLOBALS    : 
@CALLS      : 
@CREATED    : Feb. 21, 1995    David MacDonald
@MODIFIED   : 
---------------------------------------------------------------------------- */

/* ---------------------------------------------------------------------------

     There are two different versions of the grid inverse function.  I would
have hoped that my version worked best, since it uses first derivatives and
Newton's method.  However, Louis' version seems to work better, perhaps since
it matches the code he uses in minctracc to generate the grid transforms.

- David MacDonald

---------------------------------------------------------------------------- */

VIOAPI  void  grid_inverse_transform_point(
    General_transform   *transform,
    Real                x,
    Real                y,
    Real                z,
    Real                *x_transformed,
    Real                *y_transformed,
    Real                *z_transformed )
{
    Real   solution[N_DIMENSIONS];
    Real   initial_guess[N_DIMENSIONS];
    Real   desired_values[N_DIMENSIONS];

    /* --- fill in the initial guess */

    initial_guess[X] = x;
    initial_guess[Y] = y;
    initial_guess[Z] = z;

    /* --- define what the desired function values are */

    desired_values[X] = x;
    desired_values[Y] = y;
    desired_values[Z] = z;

    /* --- find the x,y,z that are mapped to the desired values */

    if( newton_root_find( N_DIMENSIONS, forward_function,
                          (void *) transform,
                          initial_guess, desired_values,
                          solution, INVERSE_FUNCTION_TOLERANCE, 
                          INVERSE_DELTA_TOLERANCE, MAX_INVERSE_ITERATIONS ))
    {
        *x_transformed = solution[X];
        *y_transformed = solution[Y];
        *z_transformed = solution[Z];
    }
    else  /* --- if no solution found, not sure what is reasonable to return */
    {
        *x_transformed = x;
        *y_transformed = y;
        *z_transformed = z;
    }
}
#endif

/* ----------------------------- MNI Header -----------------------------------
@NAME       : grid_inverse_transform_point
@INPUT      : transform
              x
              y
              z
@OUTPUT     : x_transformed
              y_transformed
              z_transformed
@RETURNS    : 
@DESCRIPTION: Transforms the point by the inverse of the grid transform.
              Approximates the solution using a simple iterative step
              method.
@METHOD     : 
@GLOBALS    : 
@CALLS      : 
@CREATED    : 1993?   Louis Collins
@MODIFIED   : 1994    David MacDonald
@MODIFIED   : 
---------------------------------------------------------------------------- */

VIOAPI  void  grid_inverse_transform_point(
    General_transform   *transform,
    Real                x,
    Real                y,
    Real                z,
    Real                *x_transformed,
    Real                *y_transformed,
    Real                *z_transformed )
{
#define  NUMBER_TRIES  10
    int    tries;
    Real   best_x, best_y, best_z;
    Real   tx, ty, tz;
    Real   gx, gy, gz;
    Real   error_x, error_y, error_z, error, smallest_e;
    Real   ftol;

    grid_transform_point( transform, x, y, z, &tx, &ty, &tz );
    tx = x - (tx - x);
    ty = y - (ty - y);
    tz = z - (tz - z);

    grid_transform_point( transform, tx, ty, tz, &gx, &gy, &gz );

    error_x = x - gx;
    error_y = y - gy;
    error_z = z - gz;

    tries = 0;

    error = smallest_e = FABS(error_x) + FABS(error_y) + FABS(error_z);
    best_x = tx;
    best_y = ty;
    best_z = tz;

    // Adapt ftol to grid step sizes. For 1mm stx volume with grid 4mm, we
    // are using ftol=0.05 (=4mm/80). For histology data at grid 0.125mm,
    // then use ftol=0.125/80=0.0015625, which is fine on 0.01mm volume. 
    // ftol = 0.05;   // good for MNI space at 1mm (grid 2mm or 4mm)
    // ftol = 0.001;  // acceptable for big brain slice (grid at 0.125, voxel at 0.01mm)

    // This is ok too:
    // Make the error a fraction of the initial residual.
    // ftol = 0.05 * smallest_e + 0.0001;

    int    sizes[MAX_DIMENSIONS];
    Real   steps[MAX_DIMENSIONS];
    Volume volume = (Volume) transform->displacement_volume;
    get_volume_sizes( volume, sizes );
    get_volume_separations( volume, steps );

    /*--- find which of 4 dimensions is the vector dimension */
    short d, vector_dim = -1;
    for_less( vector_dim, 0, FOUR_DIMS ) {
      for_less( d, 0, N_DIMENSIONS ) {
        if( volume->spatial_axes[d] == vector_dim ) break;
      }
      if( d == N_DIMENSIONS ) break;
    }

    ftol = -1.0;
    for_less( d, 0, FOUR_DIMS ) {
      if( d == vector_dim ) continue;
      if( sizes[d] == 1 ) continue;
      if( ftol < 0 ) ftol = steps[d];
      if( steps[d] < ftol ) ftol = steps[d];
    }
    ftol = ftol / 80.0;
    if( ftol > 0.05 ) ftol = 0.05;   // just to be sure for large grids

    while( ++tries < NUMBER_TRIES && smallest_e > ftol ) {
        tx += 0.95 * error_x;
        ty += 0.95 * error_y;
        tz += 0.95 * error_z;

        grid_transform_point( transform, tx, ty, tz, &gx, &gy, &gz );

        error_x = x - gx;
        error_y = y - gy;
        error_z = z - gz;
    
        error = FABS(error_x) + FABS(error_y) + FABS(error_z);

        if( error < smallest_e ) {
            smallest_e = error;
            best_x = tx;
            best_y = ty;
            best_z = tz;
        }
    }

    *x_transformed = best_x;
    *y_transformed = best_y;
    *z_transformed = best_z;
}

/* ----------------------------- MNI Header -----------------------------------
@NAME       : evaluate_grid_volume
@INPUT      : volume
              voxel
              degrees_continuity
@OUTPUT     : values
              derivs  (if non-NULL)
@RETURNS    : 
@DESCRIPTION: Takes a voxel space position and evaluates the value within
              the volume by nearest_neighbour, linear, quadratic, or
              cubic interpolation.  Rather than use the generic evaluate_volume
              function, this special purpose function is a bit faster.
@CREATED    : Mar. 16, 1995           David MacDonald
@MODIFIED   : 
---------------------------------------------------------------------------- */

static  void   evaluate_grid_volume(
    Volume         volume,
    Real           x,
    Real           y,
    Real           z,
    int            degrees_continuity,
    Real           values[],
    Real           deriv_x[],
    Real           deriv_y[],
    Real           deriv_z[] )
{
    Real     voxel[MAX_DIMENSIONS], voxel_vector[MAX_DIMENSIONS];
    int      inc0, inc1, inc2, inc3, inc[MAX_DIMENSIONS], derivs_per_value;
    int      ind0, vector_dim;
    int      start0, start1, start2, start3, inc_so_far;
    int      end0, end1, end2, end3;
    int      v0, v1, v2, v3;
    int      v, d, id, sizes[MAX_DIMENSIONS];
    int      start[MAX_DIMENSIONS];
    int      end[MAX_DIMENSIONS];
    Real     fraction[MAX_DIMENSIONS], bound, pos;
    Real     coefs[SPLINE_DEGREE*SPLINE_DEGREE*SPLINE_DEGREE*N_COMPONENTS];
    Real     values_derivs[N_COMPONENTS + N_COMPONENTS * N_DIMENSIONS];


    convert_world_to_voxel( volume, x, y, z, voxel );

    if( get_volume_n_dimensions(volume) != FOUR_DIMS )
        handle_internal_error( "evaluate_grid_volume" );

    /*--- find which of 4 dimensions is the vector dimension */

    for_less( vector_dim, 0, FOUR_DIMS ) {
        for_less( d, 0, N_DIMENSIONS ) {
            if( volume->spatial_axes[d] == vector_dim )
                break;
        }
        if( d == N_DIMENSIONS )
            break;
    }

    get_volume_sizes( volume, sizes );

    /*--- if a 2-d slice, do best interpolation in the plane */

    int is_2dslice = -1;
    for_less( d, 0, FOUR_DIMS ) {
      if( d == vector_dim ) continue;
      if( sizes[d] == 1 ) {
        is_2dslice = d;
      }
    }

    bound = (Real) degrees_continuity / 2.0;

    /*--- if near the edges, reduce the degrees of continuity.
          This is very important. Doing cubic (with a shifted
          stencil) near a boundary will cause trouble because
          the stencil needs to be centered. This is why quadratic
          is also disabled (not symmetric stencil). CL. */

    for_less( d, 0, FOUR_DIMS ) {
      if( d == is_2dslice ) continue;
      if( d == vector_dim ) continue;
      while( degrees_continuity >= -1 &&
             (voxel[d] < bound  ||
              voxel[d] > (Real) sizes[d] - 1.0 - bound ||
              bound == (Real) sizes[d] - 1.0 - bound ) ) {
        --degrees_continuity;
        if( degrees_continuity == 1 )
          degrees_continuity = 0;
        bound = (Real) degrees_continuity / 2.0;
      }
    }

    /*--- check to fill in the first derivative */

    if( degrees_continuity < 0 && deriv_x != NULL ) {
        for_less( v, 0, N_COMPONENTS ) {
            deriv_x[v] = 0.0;
            deriv_y[v] = 0.0;
            deriv_z[v] = 0.0;
        }
    }

    /*--- check if outside */

    for( d = 0; d < FOUR_DIMS; d++ ) {
      if( d == vector_dim ) continue;
      if( voxel[d] < -0.5 || voxel[d] > sizes[d]-0.5 ) {
        for_less( v, 0, N_COMPONENTS ) {
           values[v] = 0.0;
        }
        return;
      }
    }

    /*--- determine the starting positions in the volume to grab control
          vertices */

    id = 0;
    for_less( d, 0, FOUR_DIMS ) {
        if( d == vector_dim ) continue;
        if( d == is_2dslice ) {
            pos = 0.0;
            start[d] = 0;
            end[d] = 1;
        } else {
            pos = voxel[d] - bound;
            start[d] = FLOOR( pos );
            if( start[d] < 0 ) {
                start[d] = 0;
            } else if( start[d]+degrees_continuity+1 >= sizes[d] ) {
                start[d] = sizes[d] - degrees_continuity - 2;
            }
            end[d] = start[d] + degrees_continuity + 2;
            fraction[id] = pos - (double) start[d];
            ++id;
        }
    }

    /*--- create the strides */

    start[vector_dim] = 0;
    end[vector_dim] = N_COMPONENTS;

    inc_so_far = N_COMPONENTS;
    for_down( d, FOUR_DIMS-1, 0 ) {
        if( d != vector_dim ) {
            inc[d] = inc_so_far;
            inc_so_far *= ( end[d] - start[d] );
        }
    }

    /*--- copy stride arrays to variables for speed */

    inc[vector_dim] = 1;

    start0 = start[0];
    start1 = start[1];
    start2 = start[2];
    start3 = start[3];

    end0 = end[0];
    end1 = end[1];
    end2 = end[2];
    end3 = end[3];

    inc0 = inc[0] - inc[1] * (end1 - start1);
    inc1 = inc[1] - inc[2] * (end2 - start2);
    inc2 = inc[2] - inc[3] * (end3 - start3);
    inc3 = inc[3];

    /*--- extract values from volume */

    ind0 = 0;

    for_less( v0, start0, end0 ) {
        for_less( v1, start1, end1 ) {
            for_less( v2, start2, end2 ) {
                for_less( v3, start3, end3 ) {
                    GET_VALUE_4D_TYPED( coefs[ind0], (Real), volume,
                                        v0, v1, v2, v3 );
                    ind0 += inc3;
                }
                ind0 += inc2;
            }
            ind0 += inc1;
        }
        ind0 += inc0;
    }

    /*--- interpolate values */

    if( degrees_continuity == -1 ) {
        for_less( v, 0, N_COMPONENTS )
            values[v] = coefs[v];
    } else {
        if( is_2dslice == -1 ) {
          evaluate_interpolating_spline( N_DIMENSIONS, fraction,
                                         degrees_continuity + 2, 
                                         N_COMPONENTS, coefs, 0, values_derivs );
        } else {
          evaluate_interpolating_spline( N_DIMENSIONS-1, fraction,
                                         degrees_continuity + 2, 
                                         N_COMPONENTS, coefs, 0, values_derivs );
        }

        /*--- extract values and derivatives from values_derivs */

        if( deriv_x != NULL )
            derivs_per_value = 8;
        else
            derivs_per_value = 1;

        for_less( v, 0, N_COMPONENTS ) {
            values[v] = values_derivs[v*derivs_per_value];
        }

        if( deriv_x != NULL )
        {
            for_less( v, 0, N_COMPONENTS )
            {
                id = 0;
                for_less( d, 0, FOUR_DIMS )
                {
                    if( d != vector_dim )
                    {
                        voxel_vector[d] = values_derivs[v*8 + (4>>id)];
                        ++id;
                    }
                    else
                        voxel_vector[d] = 0.0;
                }
             
                convert_voxel_normal_vector_to_world( volume, voxel_vector,
                                    &deriv_x[v], &deriv_y[v], &deriv_z[v] );
            }
        }
    }
}