1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
|
from gatb import Graph
import csv
import sys
import numpy as np
import pandas as pd
from Bio.Seq import Seq
from Bio import SeqIO
import statistics
import pandas as pd
import getopt
def main():
print(sys.argv[1:])
try:
opts, args = getopt.getopt(sys.argv[1:], "g:p:c:b:s:t:v:o:m:", ["graph=", "genome_parser=", "branching_outp=", "bkpt_file=", "truth_vcf=", "outp_context=","vcf_fill=","bkpt_outp=","threshold="])
except getopt.GetoptError:
# print help information and exit:
#print ('error') # will print something like "option -a not recognized"
sys.exit(2)
# Default parameters
#print(opts)
graph = ""
genome_parser = ""
branching_outp = ""
bkpt_file = ""
truth_vcf = ""
outp_context = ""
vcf_fill=""
dic_parse = {}
bkpt_outp=""
threshold=0.80
for opt, arg in opts:
print(opt, arg)
if opt in ('-g', "--graph"):
graph = arg
#print(i)
elif opt in ('-p', "--genome_parser"):
genome_parser = arg
#print(r)
elif opt in ('-c', "--branching_outp"):
branching_outp = arg
#print(i)
elif opt in ('-b', "--bkpt_file"):
bkpt_file = arg
elif opt in ('-s', "--truth_vcf"):
truth_vcf = arg
elif opt in ('-t', "--outp_context"):
outp_context = arg
elif opt in ('-v', "--vcf_fill"):
vcf_fill = arg
elif opt in ('-o', "--bkpt_outp"):
bkpt_outp = arg
elif opt in ('-m', "--threshold"):
threshold =int(arg)
else:
assert False, "unhandled option"
#dic_parse=parsing_genome_branching(graph, genome_parser)
#parsing_genome_branching2(graph,genome_parser,branching_outp)
#analyze_genomic_context(bkpt_file, branching_outp,bkpt_outp)
#analyze_genomic_context2(bkpt_file,branching_outp,truth_vcf,vcf_fill)
#write_context_genomic(dico_TP, dico_FP,outp_context)
analyze_genomic_context_direct(bkpt_file, graph,genome_parser,bkpt_outp,threshold)
def analyze_genomic_context_direct(bkpt, graph_h5,genome,outp_bkpt,threshold):
forma = "-in "+graph_h5
graph = Graph(forma)
graph
genomes_parser = SeqIO.parse(open(genome), "fasta")
genome_parser = SeqIO.parse(open(bkpt), "fasta")
outp_find = csv.writer(open(outp_bkpt, 'w'), delimiter='\n')
liste_good=[]
liste_chrom_seen=[]
liste_position = []
dico_first={}
dico_second={}
total_bkpt=0
count=0
for element in genome_parser :
if count%2==0 :
dico_first.setdefault(element.description.split('_')[1], []).append(int(element.description.split('_')[3]))
total_bkpt+=1
count+=1
for elt in genomes_parser :
str_chromosome = str(elt.seq)
id_chrom=str(elt.description)
if id_chrom in dico_first :
for value in dico_first[id_chrom] :
#print(value)
sum_degree=[]
for i in range (50) :
kmer = str_chromosome[value-i-31:value-i]
node = graph[kmer]
bytes(node)
assert node.reversed == node
sum_degree.append(node.out_degree)
sum_degree.append(node.in_degree)
percentage_concatenate = (sum_degree.count(1)+sum_degree.count(2))/(len(sum_degree))
#print(percentage_concatenate)
if percentage_concatenate > threshold :
dico_second.setdefault(id_chrom, []).append(int(value))
a=0
for i in dico_second:
a+=len(dico_second[i])
print ("total breakpoints kept : ", a, " on ", total_bkpt)
genome_parser = SeqIO.parse(open(bkpt), "fasta")
for element in genome_parser :
#print(element)
if int(element.description.split('_')[3]) in dico_second[element.description.split('_')[1]] :
outp_find.writerow([">"+element.description,element.seq])
def parsing_genome_branching(graph_h5, genome):
forma = "-in "+graph_h5
graph = Graph(forma)
graph
genome_parser = SeqIO.parse(open(genome), "fasta")
dico_parse={}
for chromosome in genome_parser:
str_chromosome = str(chromosome.seq)
#print(str_chromosome[0:31])
for i in range(len(str_chromosome)-31):
if "N" not in str_chromosome[i:i+31]:
#print (str_chromosome[i:i+31])
kmer = str_chromosome[i:i+31]
node = graph[kmer]
bytes(node)
assert node.reversed == node
position = i
out_deg = node.out_degree
in_deg = node.in_degree
#if out_deg>1 or in_deg>1
dico_parse.setdefault(chromosome.description, []).append((position, in_deg, out_deg))
else:
dico_parse.setdefault(chromosome.description, []).append((i, 0, 0))
for a in dico_parse :
print(a)
return (dico_parse)
def parsing_genome_branching2(graph_h5, genome, outpt):
forma = "-in "+graph_h5
graph = Graph(forma)
graph
genome_parser = SeqIO.parse(open(genome), "fasta")
output_bed = csv.writer(open(outpt, "w"), delimiter="\t")
output_bed.writerow(["chr","position", "in_degree", "out_degree"])
for chromosome in genome_parser:
str_chromosome = str(chromosome.seq)
#print(str_chromosome[0:31])
for i in range(len(str_chromosome)-31):
if "N" not in str_chromosome[i:i+31]:
#print (str_chromosome[i:i+31])
kmer = str_chromosome[i:i+31]
node = graph[kmer]
bytes(node)
assert node.reversed == node
position = i
out_deg = node.out_degree
in_deg = node.in_degree
#if out_deg>1 or in_deg>1:
output_bed.writerow([chromosome.description,position, in_deg, out_deg])
else:
output_bed.writerow([chromosome.description,i, 0, 0])
def analyze_genomic_context2(bkpt, branching_bed,truth_file,vcf_file):
genome_parser = SeqIO.parse(open(bkpt), "fasta")
input_bed = pd.read_csv(branching_bed, sep='\t')
sum_FP = 0
sum_TP = 0
good_tp=0
bad_tp=0
good_fp=0
bad_fp=0
fp_remove=0
fp_kept=0
tp_kept=0
outp_fill = csv.reader(open(vcf_file, 'r'), delimiter='\t')
liste_fill=[]
for elt in outp_fill :
if "#" not in elt[0] and "@" not in elt[0] :
liste_fill.append(int(elt[1]))
#print(liste_fill)
truth_parser = csv.reader(open(truth_file, 'r'), delimiter='\t')
next(truth_parser, None) # skip header
liste_position = []
liste_truth = []
i=0
for elements in truth_parser:
if i % 2 == 0:
liste_position.append(int(elements[2]))
liste_truth.append(int(elements[2]))
i += 1
for element in genome_parser:
#Avoid repetition from couple breakpoint
if 'left' in str(element.description):
#positon changes if it is a back up insertion
if element.description.split('_')[2] == 'backup':
pos = int(element.description.split('_')[4])
else:
pos = int(element.description.split('_')[3])
test_in = input_bed[(input_bed['chr'] == element.description.split('_')[1]) & (input_bed['position'] > pos-100) & (input_bed['position'] <= pos-31)]
liste_in=test_in.in_degree.tolist()
liste_out=test_in.out_degree.tolist()
percentage_concatenate = (liste_in.count(1)+liste_in.count(2)+liste_out.count(1)+liste_out.count(2))/(len(liste_in)+len(liste_out))
if percentage_concatenate > 0.80:
sum_TP += 1
if pos in liste_truth or pos-1 in liste_truth or pos+1 in liste_truth:
good_tp+=1
if pos in liste_fill or pos-1 in liste_fill or pos+1 in liste_fill:
#print('FP failed filled', element.description)
tp_kept += 1
else :
bad_tp+=1
#print('FP failed', element.description,percentage_concatenate)
if pos in liste_fill or pos-1 in liste_fill or pos+1 in liste_fill:
#print('FP failed filled', element.description)
fp_kept += 1
else :
sum_FP+=1
#print('FP',element.description, percentage_concatenate)
if pos in liste_truth or pos-1 in liste_truth or pos+1 in liste_truth:
bad_fp += 1
#print('TP failed', element.description, percentage_concatenate)
else :
good_fp+=1
if pos in liste_fill or pos-1 in liste_fill or pos+1 in liste_fill:
#print('FP failed filled', element.description)
fp_remove+=1
print("sum sup 0.5 ", sum_TP,"sum below 0.5 ", sum_FP)
print('TP predicted ', good_tp,'TP_failed ',bad_tp,'FP predicted ', good_fp,'FP failed ',bad_fp, " fp removed ", fp_remove, "fp_kept",fp_kept,"tp_kept",tp_kept)
def analyze_genomic_context(bkpt, branching_bed,outp_bkpt):
genome_parser = SeqIO.parse(open(bkpt), "fasta")
input_bed = pd.read_csv(branching_bed, sep='\t')
outp_find = csv.writer(open(outp_bkpt, 'w'), delimiter='\n')
liste_good=[]
liste_position = []
for element in genome_parser:
#Avoid repetition from couple breakpoint
if 'left' in str(element.description):
#positon changes if it is a back up insertion
if element.description.split('_')[2] == 'backup':
pos = int(element.description.split('_')[4])
else:
pos = int(element.description.split('_')[3])
test_in = input_bed[(input_bed['chr'] == element.description.split('_')[1]) & (input_bed['position'] > pos-100) & (input_bed['position'] <= pos-31)]
liste_in=test_in.in_degree.tolist()
liste_out=test_in.out_degree.tolist()
percentage_concatenate = (liste_in.count(1)+liste_in.count(2)+liste_out.count(1)+liste_out.count(2))/(len(liste_in)+len(liste_out))
if percentage_concatenate > 0.50:
liste_good.append(element.description.split('_')[0])
print(liste_good)
genome_parser = SeqIO.parse(open(bkpt), "fasta")
for element in genome_parser :
print(element)
if element.description.split('_')[0] in liste_good :
outp_find.writerow([">"+element.description,element.seq])
#break
#print ("HEY",dico_FP)
if __name__ == "__main__":
main()
|