File: bignum.lua

package info (click to toggle)
minetest-mod-basic-robot-csm 0.0~git20190703.e082c6a-2
  • links: PTS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 268 kB
  • sloc: makefile: 2
file content (755 lines) | stat: -rw-r--r-- 24,731 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
-- BIGNUM by rnd v05122018b
-- functions: 
--	new, tostring, rnd, import/exportdec,import/exporthex _add, _sub, mul, div2, div, is_larger, is_equal, add, sub,
--	binary2base, base2binary
--	bignum.barrett, bignum.mod, bignum.modpow

bignum = {};
bignum.new = function(base,sgn, digits)
	local ret = {};
	ret.base = base -- base of digit system
	ret.digits = {};
	ret.sgn = sgn -- sign of number,+1 or -1
	local data = ret.digits;
	local m = #digits;
	ret.digits = digits; -- THIS SEEMS TO MAKE A NEW COPY! if you work on this original wont change
	--for i=1,m do data[i] = digits[m-i+1] end -- copy
	return ret
end

bignum.rnd = function(base,sgn, length) -- random number
	local ret = {};
	for i =1,length do ret[#ret+1] = math.random(base)-1 end
	return bignum.new(base,sgn,ret)
end

bignum.tostring = function(n)
	local ret =  {};
	for i = #n.digits,1,-1 do ret[#ret+1] = n.digits[i] end
	return (n.sgn>0 and "" or "-") .. table.concat(ret,"'") .. "_" ..n.base
end

--n1 = bignum.new(10,-1,{5,7,3,1})
--say(bignum.tostring(n1))

bignum.importdec = function(ndec)
	local ret = {};
	local sgn = ndec>0 and 1 or -1;
	local base = 10;
	local n = ndec*sgn;
	local data = {};
	while n>0 do
		local r = n%base
		data[#data+1] = r;
		n=(n-r)/base
	end
	ret.base = base; ret.sgn = sgn; ret.digits = data;
	return ret
end

local importdec_test = function()
	local ndec = math.random(10^9);
	local n = bignum.importdec(ndec)
	say("importdec_test : " .. ndec .. " -> " .. bignum.tostring(n))
end
--importdec_test()

bignum.exportdec = function(n) -- warning: can cause overflow if number larger than 2^52 ~ 4.5*10^15
	local ndec = 0;
	for i = #n.digits,1,-1 do ndec = 10*ndec + n.digits[i] end
	return ndec*n.sgn
end

bignum.importhex = function(hex) -- nhex is string with characters 0-9(48-57) and a-f(97-102)
	local ret = {sgn=1,base = 16, digits = {}};
	local data = ret.digits;
	local length = string.len(hex);
	for i = length,1,-1 do
		local c = string.byte(hex,i)
		if c>=48 and c<=57 then
			data[length-i+1] = c-48
		elseif c>=97 and c<=102 then
			data[length-i+1]=c-97+10
		end
	end
	return ret
end

local importhex_test = function()
	local hex = "deadbeef";
	local n = bignum.importhex(hex)
	say(bignum.tostring(n))
end
--importhex_test()

bignum.exporthex = function(nhex) -- returns string with hex
	if nhex.base~=16 then return end
	local data = nhex.digits;
	local ret = {};
	for i = #data,1,-1 do
		local c = data[i];
		if c<10 then ret[#ret+1] =  string.char(48+c) else ret[#ret+1] =  string.char(97+c-10) end
	end
	return table.concat(ret,"")
end

local exporthex_test = function()
	local n = {sgn=1,base=16,digits = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15}}
	say(bignum.exporthex(n))
end
--exporthex_test()

local base64c = {"A","B","C","D","E","F","G","H","I","J","K","L","M","N","O","P","Q","R","S","T","U","V","W","X","Y","Z",
"a","b","c","d","e","f","g","h","i","j","k","l","m","n","o","p","q","r","s","t","u","v","w","x","y","z",
"1","2","3","4","5","6","7","8","9","0","+","/"}
local base64n = {}; for i=1,#base64c do	base64n[base64c[i]]=i-1 end

bignum.exportbase64 = function(n)
	local binary = bignum.base2binary(n);
	local base64 = bignum.binary2base(binary,64);
	local data = base64.digits;	local ret = {};
	for i = #data,1,-1 do ret[#data-i+1] = base64c[data[i]+1] end
	return table.concat(ret,"")
end

bignum.importbase64 = function(base64,newbase)
	local digits = {}; local length = string.len(base64);
	for i = length,1,-1 do digits[length-i+1] = base64n[string.sub(base64,i,i)]	end
	local base64 = bignum.new(64,1,digits);
	local binary = bignum.base2binary(base64);
	return bignum.binary2base(binary,newbase);
end

local base64_test = function()
	local n = bignum.rnd(10,1,177);
	say("B   = " .. bignum.tostring(n))
	local b64 = bignum.exportbase64(n);
	say("B64 = " .. b64)
	local m = bignum.importbase64(b64,10)
	say("B   = " .. bignum.tostring(m))
end
--base64_test()

bignum.exportascii = function(n) -- 32 - 127 (96) -- problem with non even base
	local binary = bignum.base2binary(n);
	local ascii = bignum.binary2base(binary,96);
	local out = ascii.digits;
	local m = 32;local ret = {}; 
	for i = 1, #out do
		ret[#ret+1] = string.char(m+out[i])
	end
	return table.concat(ret,"")
end

bignum.importascii = function(text,newbase)
	local m = 32; -- ascii 32-127
	local digits = {}; local j = 1;
	for i=1, string.len(text) do 
		local c = string.byte(text,i)-m;
		if c>=0 and c<96 then digits[j] = c; j =j +1 end
	end
	local ascii = bignum.new(96,1,digits);
	local binary = bignum.base2binary(ascii);
	return bignum.binary2base(binary,newbase);
end

local ascii_test = function()
	local n = bignum.rnd(10,1,177); -- 512 bits
	say("B1     = " .. bignum.tostring(n))
	local ascii = bignum.exportascii(n);
	say("ascii = " .. ascii)
	local m = bignum.importascii(ascii,10)
	say("B2    = " .. bignum.tostring(m))
end
--ascii_test()

-----------------------------------------------
--	ADDITION
-----------------------------------------------


bignum._add = function(n1,n2,res) -- assume both >0, same base: n1+n2 -> res
	local b = n1.base;
	local m1 = #n1.digits;
	local m2 = #n2.digits
	local m = m1; if m2<m then m = m2 end
	local M = m1;if m2>M then M = m2 end
	
	local data1 = n1.digits; local data2 = n2.digits;
	res.digits = {} -- expensive?
	local data = res.digits; local carry = 0;
	for i = 1,M do
		local j = (data1[i] or 0) +(data2[i] or 0) + carry;
		if j >=b then carry = 1; j = j-b else carry = 0 end
		data[i] = j
	end
	if carry== 1 then data[M+1] = 1 end
	res.base = n1.base
end

local _add_test = function()
	local n1 = bignum.rnd(10,1,5)
	local n2 = bignum.rnd(10,1,5)
	local res = bignum.new(10,1,{})
	bignum._add(n1,n2,res)
	say("_add_test: " .. bignum.tostring(n1) .. " + " .. bignum.tostring(n2) .. " = " .. bignum.tostring(res))
end
--_add_test()

-----------------------------------------------
--	SUBTRACTION
-----------------------------------------------

bignum._sub = function(n1,n2,res) -- assume n1>n2>0, same base: n1-n2 -> res
	local b = n1.base;
	local m1 = #n1.digits;
	local m2 = #n2.digits
	local m = m1; if m2<m then m = m2 end
	local M = m1;if m2>M then M = m2 end
	
	local data1 = n1.digits; local data2 = n2.digits;
	res.digits = {};
	local data = res.digits; local carry = 0;
	local maxi = 0;
	for i = 1,M do
		local j = (data1[i] or 0) - (data2[i] or 0) + carry;
		if j < 0 then carry = -1; j = j+b else carry = 0 end
		if j~=0 then maxi = i end -- max nonzero digit
		data[i] = j
	end
	
	for i = maxi+1,M do	data[i] = nil end -- remove trailing zero digits if any
	res.base = n1.base
end

local _sub_test = function()
	local n1 = bignum.rnd(10,1,5)
	local n2 = bignum.rnd(10,1,5)
	local res = bignum.new(10,1,{})
	bignum._sub(n1,n2,res)
	say("_sub_test: " .. bignum.tostring(n1) .. " - " .. bignum.tostring(n2) .. " = " .. bignum.tostring(res))
end
--_sub_test()

bignum.is_equal = function(n1,n2) -- assume both >0, same base. return true if n1==n2
	local b = n1.base;
	local data1 = n1.digits; local data2 = n2.digits;
	if #data1~=#data2 then return false end
	for i =#data1,1,-1 do -- from high bits
		local d1 = data1[i];
		local d2 = data2[i];
		if d1~=d2 then return false end
	end
	return true -- all digits were ==
end

bignum.is_larger = function(n1,n2) -- assume both >0, same base. return true if n1>=n2
	local b = n1.base;
	local data1 = n1.digits; local data2 = n2.digits;
	if #data1>#data2 then return true elseif #data1<#data2 then return false end
	--remains when both same lentgth
	for i =#data1,1,-1 do -- from high bits
		local d1 = data1[i];
		local d2 = data2[i];
		if d1>d2 then return true elseif d1<d2 then return false end
	end
	return true -- all digits were >=, still larger
end

local is_larger_test = function()
	local n1 = bignum.rnd(10,1,5)
	local n2 = bignum.rnd(10,1,5)
	local res = bignum.is_larger(n1,n2);
	if res then res = "larger" else res = "smaller" end
	say("is_larger_test : " .. bignum.tostring(n1) .. " is ".. res .. " than "  .. bignum.tostring(n2))
end
--is_larger_test()

bignum.add = function(n1,n2,res) -- handle all cases, >0 or <0
	local sgn1 = n1.sgn;
	local sgn2 = n2.sgn;
	if sgn1*sgn2>0 then bignum._add(n1,n2,res); res.sgn = sgn1; return end -- simple case
	
	local is_larger = bignum.is_larger(n1,n2) -- is abs(n1)>abs(n2) ?
	local sgn = 1;
	if is_larger then sgn = sgn1 else sgn = sgn2 end
	
	if is_larger then 
		bignum._sub(n1,n2,res);
	else
		bignum._sub(n2,n1,res);
	end
	res.sgn = sgn
end

local add_test = function()
	local ndec1 = math.random(10^5) * (2*math.random(2)-3);
	local ndec2 = math.random(10^5) * (2*math.random(2)-3);
	
	local n1 = bignum.importdec(ndec1)
	local n2 = bignum.importdec(ndec2)
	local res = bignum.new(10,1,{})
	bignum.add(n1,n2,res)
	
	local resdec = bignum.exportdec(res);
	say("add_test: " .. bignum.tostring(n1) .. " + " .. bignum.tostring(n2) .. " = " .. bignum.tostring(res) .. " CHECK : " .. resdec-(ndec1+ndec2))
end
--add_test()

bignum.sub = function(n1,n2,res) -- handle all cases, >0 or <0
	--just add(n1,-n2)
	local sgn1 = n1.sgn;
	local sgn2 = -n2.sgn;
	if sgn1*sgn2>0 then bignum._add(n1,n2,res); res.sgn = sgn1; return end -- simple case
	
	local is_larger = bignum.is_larger(n1,n2) -- is abs(n1)>abs(n2) ?
	local sgn = 1;
	if is_larger then sgn = sgn1 else sgn = sgn2 end
	
	if is_larger then 
		bignum._sub(n1,n2,res);
	else
		bignum._sub(n2,n1,res);
	end
	res.sgn = sgn
end

local sub_test = function()
	local ndec1 = math.random(10^5) * (2*math.random(2)-3);
	local ndec2 = math.random(10^5) * (2*math.random(2)-3);
	
	local n1 = bignum.importdec(ndec1)
	local n2 = bignum.importdec(ndec2)
	local res = bignum.new(10,1,{})
	bignum.sub(n1,n2,res)
	local resdec = bignum.exportdec(res);
	say("sub_test: " .. bignum.tostring(n1) .. " - " .. bignum.tostring(n2) .. " = " .. bignum.tostring(res) .. " CHECK : " .. resdec-(ndec1-ndec2))
end
--sub_test()

-----------------------------------------------
--	MULTIPLY 
-----------------------------------------------

bignum.mul = function(n1,n2,res)
	
	local base = n1.base
	local sgn = n1.sgn*n2.sgn;
	
	local data1 = n1.digits; local m1 = #data1;
	local data2 = n2.digits; local m2 = #data2;
	
	res.digits = {}; res.base = base
	local data = res.digits; local m = m1+m2;
	
	local carry = 0
	for i = 1, m1 do
		-- multiply i-th digit of data1 and add to res
		local d1 = data1[i];
		carry  = 0
		for j = 1,m2 do
			local d2 = data2[j];
			local d = carry + d1*d2;
			local r =  (data[i+j-1] or 0) + d
			if r>=base then 
				data[i+j-1] = r % base; carry = (r - (r%base))/base 
			else 
				data[i+j-1] = r; carry = 0
			end
		end
		if carry>0 then data[i+m2] = carry % base end
	end
end

local mul_test = function()
	local ndec1 = math.random(10^8) 
	local ndec2 = math.random(10^8)
	
	local n1 = bignum.importdec(ndec1)
	local n2 = bignum.importdec(ndec2)
	local res = bignum.new(10,1,{})
	bignum.mul(n1,n2,res)
	local resdec = bignum.exportdec(res);
	say("mul_test: " .. bignum.tostring(n1) .. "*" .. bignum.tostring(n2) .. " = " .. bignum.tostring(res) .. " CHECK : " .. resdec-(ndec1*ndec2))
end
--mul_test()

-- m = 300, base 2^26, 100 repeats: amd ryzen 1200: 0.1s, amd-e350 apu 1.6ghz (2010) : 5.15s
mul_bench = function()
	local m = 300;
	local base = 2^26
	local r = 100
	
	local n1 = bignum.rnd(base, 1, m)
	local n2 = bignum.rnd(base, 1, m)
	local res = {digits = {}};
	local t = os.clock()
	for i = 1, r do	bignum.mul(n1,n2,res) end
	local elapsed = os.clock() - t;
	--say("n1 = " .. bignum.tostring(n1) .. ", n2 = " .. bignum.tostring(n2))
	say("mul benchmark. ".. m .. " digits, base " .. base .. ", repeats " .. r ..  " -> time " .. elapsed)
end
--mul_bench()

local exp_test = function()
	local n1 = bignum.importdec(2);
	local res1 = bignum.importdec(2);
	local res2 = bignum.importdec(1);
	
	local m=128
	for i = 1, m do
		bignum.mul(n1,res1, res2) -- n1*res1 = res2
		bignum.mul(n1,res2, res1) -- n1*res1 = res2
	end
	
	say("2^" .. (2*m) .. " = " .. bignum.tostring(res2) .. " CHECK " ..2^(2*m))

end
--exp_test()

-----------------------------------------------
--	DIVIDE
-----------------------------------------------

bignum.div2 = function(n,res) -- res = n/2, return n % 2. note: its safe to do: bignum.div2(res,res);
	
	local base = n.base;
	local data = n.digits; local m = #data;
	
	res.digits = {};
	local rdata = res.digits;
	local carry = 0
	
	local q = data[m]/2; 
	local fq = math.floor(q);
	if q~=fq then carry = base end
	if fq>0 then rdata[m] = fq else rdata[m]=nil end -- maybe digits shrink by 1?
	
	for i = m-1,1,-1 do
		local q = (data[i]+carry)/2;
		local fq = math.floor(q)
		if q~= fq then carry = base else carry = 0 end
		rdata[i] = fq;
	end
	if carry ~= 0 then return 1 else return 0 end
end
	
local div2_test = function()
	local ndec1 = math.random(10^8) 
	local n1 = bignum.importdec(ndec1)
	local res = bignum.new(10,1,n1.digits)
	bignum.div2(res,res) -- res = res/2
	
	say("div2_test: n1/2 = " .. bignum.tostring(n1) .. "/2 = " .. bignum.tostring(res) .. " = res")
	local rescheck = bignum.new(10,1,{})
	bignum._add(res,res,res);bignum._sub(n1,res, res);
	
	say("CHECK: n1-2*res = " .. bignum.tostring(res))
	
end

--div2_test()

--[[
	very simple division that works reasonably well (we only need 1 division for barrett reduction anyway, could use precomputed too)
	
	strategy: bisection for f(x) = x*D + comparison with N, takes around Log_2(initial range) steps (sums+mults), 
		so ~O(D^2*log base^(n2-n1))
		low, mid, high. pick reasonably good initial range guess, like near order of magnitude close.
		mid =  (low+high)/2
		compute: compare N and mid*D, if N bigger then low = mid else high = mid..
	BENCHMARKS: (amd ryzen 1200)
		HUGE N=10k bit number/ D=5k bit number : 1.5 s
		N = 8k bit number / D = 4k bit number : 0.7s
		N = 1040 bit, D = 520 bit: 0.0042 s ( typical application srp,diffie-hellman in Z_~2^512 group)
		if D is 3900 bits it takes around 3900 steps of iteration
			amd-e350 apu 1.6ghz (sep 2010)
				N = 8k bit, D = 4k bit, divide takes 44s ( 60x slower than ryzen)
			AMD Dual Core E2-1800 (july 2012)
				N = 8k bit, D = 4k bit, 5.25s
	TODO: 
		possible speed improve ?: after there are some digits correct
		reduce N by N = N-q0*D which will effectively decrease N and multiplies of mid ( smaller numbers ). then keep adding 
		obtained q's together to get final quotient.
		
	--]]

bignum.div = function(N,D, res) -- res = [N/D]
	
	local base = N.base;
	res.base = base
	res.digits = {}; 
	local data = res.digits; 
	
	local n1 = #N.digits;local n2 = #D.digits;
	-- trivial cases, prevent wasting time here
	if n1<n2 then res.digits = {0}; return end -- clearly N<D
	if n2 == 1 and D.digits[1] == 1 then res.digits = N.digits return end -- division by 1!
	
	local low = bignum.new(base,1,{})
	local high = bignum.new(base,1,{})
	-- better initial range for less needed iterations
	local ldigits = low.digits;local hdigits = high.digits;
	for i = 1,n1-n2 do ldigits[i]=0;hdigits[i]=0 end
	ldigits[n1-n2]=N.digits[n1];hdigits[n1-n2+1] = ldigits[n1-n2];
	--say("low " .. bignum.tostring(low) .. " high " .. bignum.tostring(high))
	
	local mid = bignum.new(base,1,{});
	local temp = bignum.new(base,1,{});
	local step = 0;
	
	while step < 100000 do -- in practice this uses around log_2 (base^(n2-n1)) iterations, for example dividing 8192 bit number by 4096 takes ~4000 iterations..
		step = step + 1
		bignum._add(low,high,mid); bignum.div2(mid,mid); -- mid = (low+high)/2
		
		if bignum.is_equal(low,mid) then 
			if DEBUG then say("DONE. step  " .. step) end-- .. " low = " .. bignum.tostring(low) .. " high = " .. bignum.tostring(high) .. " mid = " .. bignum.tostring(mid))
			res.digits = mid.digits
			return
		end

		bignum.mul(D, mid, temp) -- temp = D*mid
		if bignum.is_larger(N,temp) then low.digits = mid.digits else high.digits = mid.digits end
	end
end


local div_test = function()
	local ndec1 = math.random(10^8) 
	local n1 = bignum.importdec(ndec1)
	local ndec2 = math.random(10^6)
	local n2 = bignum.importdec(ndec2)
	
	local res = bignum.new(10,1,{})
	bignum.div(n1,n2,res)
	
	local temp = bignum.new(10,1,{})
	bignum.mul(n2,res,temp);bignum._sub(n1,temp,temp) -- temp = n1 - n2*res
	
	say(ndec1/ndec2)
	say("n1/n2 =  " .. bignum.tostring(n1) .. " / " .. bignum.tostring(n2) .. " = res = " .. bignum.tostring(res) .. ", residue n1-n2*res = " .. bignum.tostring(temp) .. (bignum.is_larger(n2,temp) and " (IS SMALLER THAN n2) " or " FAIL."))
end
--div_test()

local divbignum_test = function()
	local m = 300;
	local base = 2^26
	local n1 = bignum.rnd(base, 1, m)
	local n2 = bignum.rnd(base, 1, m/2)
	local res = {sgn=1, digits = {}};
	DEBUG = true -- to display how many steps were needed
	local t = os.clock();bignum.div(n1,n2,res); local elapsed = os.clock() - t;
	DEBUG = false
	local temp = {sgn=1, digits = {}};
	bignum.mul(n2,res,temp);bignum._sub(n1,temp, res); -- res = n1-n2*res
	if bignum.is_larger(n2, res) then 
		say("divbignum_test : residue n1 - n2*res is smaller than n2. OK.") 
	else
		say("divbignum_test : residue n1 - n2*res is NOT smaller than n2. FAIL.") 
	end
end

--divbignum_test()

div_bench = function()
	local m = 300;
	local base = 2^26
	local r = 1
	
	local n1 = bignum.rnd(base, 1, m)
	local n2 = bignum.rnd(base, 1, m/2)
	local res = {sgn=1, digits = {}};
	local t = os.clock()
	for i = 1, r do	bignum.div(n1,n2,res) end
	local elapsed = os.clock() - t;
	say("n1 = " .. bignum.tostring(n1) .. "\nn2 = " .. bignum.tostring(n2) .. "\nn1/n2 = "  .. bignum.tostring(res))
	say("div benchmark. n1 (".. m .. " digits ( " .. 26*m .." bits)), n2 (" .. m/2 .. " digits), base " .. base .. ", repeats " .. r ..  " -> time " .. elapsed)
end

--div_bench()

bignum.base2binary = function(_n)
	local base = _n.base;
	local n = {sgn = 1, base = base, digits = _n.digits }
	local data = n.digits;
	local i = 0;
	local out =  {};
	while (#data > 1 or (#data==1 and data[1] > 0)) do -- n>0
		i=i+1
		out[i]  = bignum.div2(n,n); data = n.digits;
	end
	return {sgn=1,base = 2, digits = out}
end

local base2binary_test = function()
	local base = 10;
	local m = 2;
	local n = bignum.rnd(base, 1, m)
	local nb = bignum.base2binary(n);
	say(bignum.tostring(n) .. " -> " .. bignum.tostring(nb))
end
--base2binary_test()


bignum.binary2base = function(n, newbase) -- newbase must be even
	local base = n.base;
	local ret = {sgn=1,base=newbase, digits = {0}}
	local out = ret.digits
	local data = n.digits
	for i = #data,1,-1 do
		bignum._add(ret,ret,ret) -- ret = 2*ret
		out = ret.digits
		out[1]=out[1]+ data[i]; -- WARNING: basically +1, if newbase is even no carry, else more complication here
	end
	return ret
end

local binary2base_test = function()
	local base = 10;
	local m = 4;
	local nb = bignum.rnd(2, 1, m)
	local n = bignum.binary2base(nb,base);
	say(bignum.tostring(nb) .. " -> " .. bignum.tostring(n))
end
--binary2base_test()


-----------------------------------------------
--	MODULAR MULTIPLY
-----------------------------------------------

-- a,b in Z_n -> a*b mod n = ?
-- how to compute a % n efficiently? We can use barrett reduction trick.
-- normally: a%n = a - [a/n]*n. Instead of division we compute [a/n] with multiply and shift ( base = b)
-- [a/n] = [a*(B^k/n)/B^k] = [a*m/B^k]. Here integer m is [B^k/n] for some k, where B^k>=n. since
-- a*(m/B^k-1/n) < 1 we get a*(m-B^k/n) < B^k or m-B^k/n < B^k/a. since left side is always <1 this will be true if 
-- 1 < B^k/a or a < B^k. note since a*m/B^k - a/n < 1 after applying [ ] we can still get difference = 1 (but not more),
-- so need to check if  a - [a*m/B^k]*n is smaller than n. If not additional -n is needed.
-- so REQUIREMENTS: n<=B^k, a< B^k.
-- if we need a<n^2 (like in modulo multiply in Z_n) then this means: (n-1)^2 < B^k. So if n<B^N then k should be 2N.

-- barret = {n = bignum,  m =  from barrett.., k= .., }
-- returns barrett data. used to cheaply compute a/n without division as bitshiftright_k(a*m) + possible 1, where a <= (n-1)^2
bignum.get_barrett = function(n) 
	local base = n.base;
	local k = 2*#n.digits+2; -- n<B^(n1+1) -> k = 2*(n1+1)
	local Bk = bignum.new(base,1,{})
	local res = bignum.new(base,1,{})
	local data = Bk.digits;
	for i =1,k do data[i]= 0 end; data[k+1]=1; -- this is B^k
	bignum.div(Bk, n,res);
	return {n=n, m=res, k=k};
end

local get_barrett_test = function()
	local d=4
	local ndec2 = math.random(10^d) 
	local n2 = bignum.importdec(ndec2)
	local barrett = bignum.get_barrett(n2)
	local barrettm = math.floor(10^(2*d+2)/ndec2)
	say(bignum.tostring(barrett.m) .. "(CHECK: " .. barrettm .. ")")
end
--get_barrett_test()

-- mod using barrett. possible improvement: montgomery.
bignum.mod = function(a,barrett,res) -- a should be less or equal (n-1)^2, stores a%n into res
	
	local k = barrett.k;
	local n = barrett.n;
	local m = barrett.m;
	local base = a.base;
	
	bignum.mul(a,m,res); -- large multiply 1: res = a*m

	local data = res.digits;local n1 = #data;  --res = res / B^k
	for i = 1, n1-k do data[i]=data[i+k] end; for i = n1-k+1,n1 do data[i] = nil end -- bitshift
	
	local temp = bignum.new(base,1,{});
	bignum.mul(res,n, temp); -- multiply 2: res*n
	bignum._sub(a,temp,res); -- subtract: res = a - res*n
	if bignum.is_larger(res,n) then bignum._sub(res,n,res) end
end

local mod_test = function()
	local m = 3;
	local base = 10;
	local n1 = bignum.rnd(base, 1, 2*m)
	local n2 = bignum.rnd(base, 1, m)
	local barrett = bignum.get_barrett(n2)
	local res = bignum.new(base,1,{});
	bignum.mod(n1, barrett, res);
	local is_larger = bignum.is_larger(n2,res);
	
	say("barrett mod_test: n1 " .. bignum.tostring(n1) .. " n2 " .. bignum.tostring(n2) .. " res = n1 % n2 = " .. bignum.tostring(res) .. " CHECK: res<n2 " .. (is_larger and "OK" or "FAIL") )
	
end
--mod_test()

--  computing a^b mod n using modular exponentiation : 
--  1. suppose we have b = sum_i b_i*2^i ( binary expansion). Then a^b = prod_i a^(2^i) a^b_i.
-- 		we start from low bits and multiply with new term each step. we compute a^(2^i) mod n iteratively, with a = a^2 mod n.
--		In each step if b_i == 1 we multiply with a. Work: 2-3 multiplies each step
--  2. we could first compute all b_i and then start from high end ( like efficient polynomial evaluate):
--  	res = res^2*a^(b_i) mod n . work (1-2 multiplies per step + all b_i).
--	3. sliding window. works like 2 but it uses binary representation of b and does larger parts (window size k) at once. Window it
--		uses is of the form 1xxxxxxxx1, where total length less than prescribed k. Potentially k* faster but with precompute of 2^k-1 values

-- method 1 
bignum.modpow = function(a_,b_,barrett) -- efficiently calculate a^b mod n, need log_2 b steps
	local base = a_.base
	local a = bignum.new(base,1,a_.digits); -- base
	local b = bignum.new(base,1,b_.digits); -- exponent
	local bdata = b.digits;
	
	local ret = bignum.new(base,1,{1});
	local temp = bignum.new(base,1,{});
	
	while (#bdata > 1 or (#bdata==1 and bdata[1] > 0)) do -- b>0
		if bdata[1] % 2 == 1 then
			bignum.mul(ret, a, temp) 
			bignum.mod(temp,barrett, ret) -- ret = a*ret % n
		end
		bignum.div2(b,b); bdata = b.digits -- b = b/2
		
		bignum.mul(a,a,temp);bignum.mod(temp,barrett, a) -- a=a^2 % n
	end
	return ret
end

-- times: base 2^26. 
-- 	ryzen 3 1200: m=150 (4000 bits): 7.2s, m=80(2080bits): 1.1s,  m=40: 0.14, m = 30: 0.07, m = 20: 0.028
-- 	amd-e350 apu 1.6ghz (2010), m = 20: 0.59s, m = 40: 6.28s
DH_bench = function() -- test for modpow with diffie-hellman key exchange
	local m = 40;
	local bits = 26
	local base = 2^bits;
	local a = bignum.rnd(base, 1, m)
	local b = bignum.rnd(base, 1, m)
	local c = bignum.rnd(base, 1, m)
	local n = bignum.rnd(base, 1, m)
	
	local t = os.clock()
	local barrett = bignum.get_barrett(n) -- precompute this from modulo n
	local t1 = os.clock(); say("barret pre computation : " .. t1-t);t=t1
	
	local resb = bignum.modpow(a,b, barrett); -- efficient modular a^b using barrett reductions
	t1 = os.clock();say("resb = modpow(a,b) : " .. t1-t);t=t1
	
	local resc = bignum.modpow(a,c, barrett); -- a^c
	t1 = os.clock();say("resc = modpow(a,c) : " .. t1-t);t=t1
	
	local resbc = bignum.modpow(resb,c, barrett); -- (a^b)^c
	t1 = os.clock();say("resbc = modpow(resb,c) : " .. t1-t);t=t1
	
	local rescb = bignum.modpow(resc,b, barrett); -- (a^c)^b
	t1 = os.clock();say("rescb = modpow(resc,b) : " .. t1-t);t=t1
	
	say("DH benchmark: (a^b)^c = " .. bignum.tostring(resbc) .. "\nCHECK equality (a^b)^c == (a^c)^b : " .. (bignum.is_equal(resbc,rescb) and "OK" or "FAIL"))
	say("settings: base " .. base .. ", digits " .. m .. " (" ..  m*bits .." bits )")
end
DH_bench()

-- note: DH security ( log problem ) can be solved for 512 bit by expert team, 1024 prime modulo for state actors ( logjam attack, "Imperfect Forward Secrecy:
--	How Diffie-Hellman Fails in Practice", Oct 2015

self.remove() -- prevent loop in robot csm