1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
|
-- BIGNUM by rnd v05122018b
-- functions:
-- new, tostring, rnd, import/exportdec,import/exporthex _add, _sub, mul, div2, div, is_larger, is_equal, add, sub,
-- binary2base, base2binary
-- bignum.barrett, bignum.mod, bignum.modpow
bignum = {};
bignum.new = function(base,sgn, digits)
local ret = {};
ret.base = base -- base of digit system
ret.digits = {};
ret.sgn = sgn -- sign of number,+1 or -1
local data = ret.digits;
local m = #digits;
ret.digits = digits; -- THIS SEEMS TO MAKE A NEW COPY! if you work on this original wont change
--for i=1,m do data[i] = digits[m-i+1] end -- copy
return ret
end
bignum.rnd = function(base,sgn, length) -- random number
local ret = {};
for i =1,length do ret[#ret+1] = math.random(base)-1 end
return bignum.new(base,sgn,ret)
end
bignum.tostring = function(n)
local ret = {};
for i = #n.digits,1,-1 do ret[#ret+1] = n.digits[i] end
return (n.sgn>0 and "" or "-") .. table.concat(ret,"'") .. "_" ..n.base
end
--n1 = bignum.new(10,-1,{5,7,3,1})
--say(bignum.tostring(n1))
bignum.importdec = function(ndec)
local ret = {};
local sgn = ndec>0 and 1 or -1;
local base = 10;
local n = ndec*sgn;
local data = {};
while n>0 do
local r = n%base
data[#data+1] = r;
n=(n-r)/base
end
ret.base = base; ret.sgn = sgn; ret.digits = data;
return ret
end
local importdec_test = function()
local ndec = math.random(10^9);
local n = bignum.importdec(ndec)
say("importdec_test : " .. ndec .. " -> " .. bignum.tostring(n))
end
--importdec_test()
bignum.exportdec = function(n) -- warning: can cause overflow if number larger than 2^52 ~ 4.5*10^15
local ndec = 0;
for i = #n.digits,1,-1 do ndec = 10*ndec + n.digits[i] end
return ndec*n.sgn
end
bignum.importhex = function(hex) -- nhex is string with characters 0-9(48-57) and a-f(97-102)
local ret = {sgn=1,base = 16, digits = {}};
local data = ret.digits;
local length = string.len(hex);
for i = length,1,-1 do
local c = string.byte(hex,i)
if c>=48 and c<=57 then
data[length-i+1] = c-48
elseif c>=97 and c<=102 then
data[length-i+1]=c-97+10
end
end
return ret
end
local importhex_test = function()
local hex = "deadbeef";
local n = bignum.importhex(hex)
say(bignum.tostring(n))
end
--importhex_test()
bignum.exporthex = function(nhex) -- returns string with hex
if nhex.base~=16 then return end
local data = nhex.digits;
local ret = {};
for i = #data,1,-1 do
local c = data[i];
if c<10 then ret[#ret+1] = string.char(48+c) else ret[#ret+1] = string.char(97+c-10) end
end
return table.concat(ret,"")
end
local exporthex_test = function()
local n = {sgn=1,base=16,digits = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15}}
say(bignum.exporthex(n))
end
--exporthex_test()
local base64c = {"A","B","C","D","E","F","G","H","I","J","K","L","M","N","O","P","Q","R","S","T","U","V","W","X","Y","Z",
"a","b","c","d","e","f","g","h","i","j","k","l","m","n","o","p","q","r","s","t","u","v","w","x","y","z",
"1","2","3","4","5","6","7","8","9","0","+","/"}
local base64n = {}; for i=1,#base64c do base64n[base64c[i]]=i-1 end
bignum.exportbase64 = function(n)
local binary = bignum.base2binary(n);
local base64 = bignum.binary2base(binary,64);
local data = base64.digits; local ret = {};
for i = #data,1,-1 do ret[#data-i+1] = base64c[data[i]+1] end
return table.concat(ret,"")
end
bignum.importbase64 = function(base64,newbase)
local digits = {}; local length = string.len(base64);
for i = length,1,-1 do digits[length-i+1] = base64n[string.sub(base64,i,i)] end
local base64 = bignum.new(64,1,digits);
local binary = bignum.base2binary(base64);
return bignum.binary2base(binary,newbase);
end
local base64_test = function()
local n = bignum.rnd(10,1,177);
say("B = " .. bignum.tostring(n))
local b64 = bignum.exportbase64(n);
say("B64 = " .. b64)
local m = bignum.importbase64(b64,10)
say("B = " .. bignum.tostring(m))
end
--base64_test()
bignum.exportascii = function(n) -- 32 - 127 (96) -- problem with non even base
local binary = bignum.base2binary(n);
local ascii = bignum.binary2base(binary,96);
local out = ascii.digits;
local m = 32;local ret = {};
for i = 1, #out do
ret[#ret+1] = string.char(m+out[i])
end
return table.concat(ret,"")
end
bignum.importascii = function(text,newbase)
local m = 32; -- ascii 32-127
local digits = {}; local j = 1;
for i=1, string.len(text) do
local c = string.byte(text,i)-m;
if c>=0 and c<96 then digits[j] = c; j =j +1 end
end
local ascii = bignum.new(96,1,digits);
local binary = bignum.base2binary(ascii);
return bignum.binary2base(binary,newbase);
end
local ascii_test = function()
local n = bignum.rnd(10,1,177); -- 512 bits
say("B1 = " .. bignum.tostring(n))
local ascii = bignum.exportascii(n);
say("ascii = " .. ascii)
local m = bignum.importascii(ascii,10)
say("B2 = " .. bignum.tostring(m))
end
--ascii_test()
-----------------------------------------------
-- ADDITION
-----------------------------------------------
bignum._add = function(n1,n2,res) -- assume both >0, same base: n1+n2 -> res
local b = n1.base;
local m1 = #n1.digits;
local m2 = #n2.digits
local m = m1; if m2<m then m = m2 end
local M = m1;if m2>M then M = m2 end
local data1 = n1.digits; local data2 = n2.digits;
res.digits = {} -- expensive?
local data = res.digits; local carry = 0;
for i = 1,M do
local j = (data1[i] or 0) +(data2[i] or 0) + carry;
if j >=b then carry = 1; j = j-b else carry = 0 end
data[i] = j
end
if carry== 1 then data[M+1] = 1 end
res.base = n1.base
end
local _add_test = function()
local n1 = bignum.rnd(10,1,5)
local n2 = bignum.rnd(10,1,5)
local res = bignum.new(10,1,{})
bignum._add(n1,n2,res)
say("_add_test: " .. bignum.tostring(n1) .. " + " .. bignum.tostring(n2) .. " = " .. bignum.tostring(res))
end
--_add_test()
-----------------------------------------------
-- SUBTRACTION
-----------------------------------------------
bignum._sub = function(n1,n2,res) -- assume n1>n2>0, same base: n1-n2 -> res
local b = n1.base;
local m1 = #n1.digits;
local m2 = #n2.digits
local m = m1; if m2<m then m = m2 end
local M = m1;if m2>M then M = m2 end
local data1 = n1.digits; local data2 = n2.digits;
res.digits = {};
local data = res.digits; local carry = 0;
local maxi = 0;
for i = 1,M do
local j = (data1[i] or 0) - (data2[i] or 0) + carry;
if j < 0 then carry = -1; j = j+b else carry = 0 end
if j~=0 then maxi = i end -- max nonzero digit
data[i] = j
end
for i = maxi+1,M do data[i] = nil end -- remove trailing zero digits if any
res.base = n1.base
end
local _sub_test = function()
local n1 = bignum.rnd(10,1,5)
local n2 = bignum.rnd(10,1,5)
local res = bignum.new(10,1,{})
bignum._sub(n1,n2,res)
say("_sub_test: " .. bignum.tostring(n1) .. " - " .. bignum.tostring(n2) .. " = " .. bignum.tostring(res))
end
--_sub_test()
bignum.is_equal = function(n1,n2) -- assume both >0, same base. return true if n1==n2
local b = n1.base;
local data1 = n1.digits; local data2 = n2.digits;
if #data1~=#data2 then return false end
for i =#data1,1,-1 do -- from high bits
local d1 = data1[i];
local d2 = data2[i];
if d1~=d2 then return false end
end
return true -- all digits were ==
end
bignum.is_larger = function(n1,n2) -- assume both >0, same base. return true if n1>=n2
local b = n1.base;
local data1 = n1.digits; local data2 = n2.digits;
if #data1>#data2 then return true elseif #data1<#data2 then return false end
--remains when both same lentgth
for i =#data1,1,-1 do -- from high bits
local d1 = data1[i];
local d2 = data2[i];
if d1>d2 then return true elseif d1<d2 then return false end
end
return true -- all digits were >=, still larger
end
local is_larger_test = function()
local n1 = bignum.rnd(10,1,5)
local n2 = bignum.rnd(10,1,5)
local res = bignum.is_larger(n1,n2);
if res then res = "larger" else res = "smaller" end
say("is_larger_test : " .. bignum.tostring(n1) .. " is ".. res .. " than " .. bignum.tostring(n2))
end
--is_larger_test()
bignum.add = function(n1,n2,res) -- handle all cases, >0 or <0
local sgn1 = n1.sgn;
local sgn2 = n2.sgn;
if sgn1*sgn2>0 then bignum._add(n1,n2,res); res.sgn = sgn1; return end -- simple case
local is_larger = bignum.is_larger(n1,n2) -- is abs(n1)>abs(n2) ?
local sgn = 1;
if is_larger then sgn = sgn1 else sgn = sgn2 end
if is_larger then
bignum._sub(n1,n2,res);
else
bignum._sub(n2,n1,res);
end
res.sgn = sgn
end
local add_test = function()
local ndec1 = math.random(10^5) * (2*math.random(2)-3);
local ndec2 = math.random(10^5) * (2*math.random(2)-3);
local n1 = bignum.importdec(ndec1)
local n2 = bignum.importdec(ndec2)
local res = bignum.new(10,1,{})
bignum.add(n1,n2,res)
local resdec = bignum.exportdec(res);
say("add_test: " .. bignum.tostring(n1) .. " + " .. bignum.tostring(n2) .. " = " .. bignum.tostring(res) .. " CHECK : " .. resdec-(ndec1+ndec2))
end
--add_test()
bignum.sub = function(n1,n2,res) -- handle all cases, >0 or <0
--just add(n1,-n2)
local sgn1 = n1.sgn;
local sgn2 = -n2.sgn;
if sgn1*sgn2>0 then bignum._add(n1,n2,res); res.sgn = sgn1; return end -- simple case
local is_larger = bignum.is_larger(n1,n2) -- is abs(n1)>abs(n2) ?
local sgn = 1;
if is_larger then sgn = sgn1 else sgn = sgn2 end
if is_larger then
bignum._sub(n1,n2,res);
else
bignum._sub(n2,n1,res);
end
res.sgn = sgn
end
local sub_test = function()
local ndec1 = math.random(10^5) * (2*math.random(2)-3);
local ndec2 = math.random(10^5) * (2*math.random(2)-3);
local n1 = bignum.importdec(ndec1)
local n2 = bignum.importdec(ndec2)
local res = bignum.new(10,1,{})
bignum.sub(n1,n2,res)
local resdec = bignum.exportdec(res);
say("sub_test: " .. bignum.tostring(n1) .. " - " .. bignum.tostring(n2) .. " = " .. bignum.tostring(res) .. " CHECK : " .. resdec-(ndec1-ndec2))
end
--sub_test()
-----------------------------------------------
-- MULTIPLY
-----------------------------------------------
bignum.mul = function(n1,n2,res)
local base = n1.base
local sgn = n1.sgn*n2.sgn;
local data1 = n1.digits; local m1 = #data1;
local data2 = n2.digits; local m2 = #data2;
res.digits = {}; res.base = base
local data = res.digits; local m = m1+m2;
local carry = 0
for i = 1, m1 do
-- multiply i-th digit of data1 and add to res
local d1 = data1[i];
carry = 0
for j = 1,m2 do
local d2 = data2[j];
local d = carry + d1*d2;
local r = (data[i+j-1] or 0) + d
if r>=base then
data[i+j-1] = r % base; carry = (r - (r%base))/base
else
data[i+j-1] = r; carry = 0
end
end
if carry>0 then data[i+m2] = carry % base end
end
end
local mul_test = function()
local ndec1 = math.random(10^8)
local ndec2 = math.random(10^8)
local n1 = bignum.importdec(ndec1)
local n2 = bignum.importdec(ndec2)
local res = bignum.new(10,1,{})
bignum.mul(n1,n2,res)
local resdec = bignum.exportdec(res);
say("mul_test: " .. bignum.tostring(n1) .. "*" .. bignum.tostring(n2) .. " = " .. bignum.tostring(res) .. " CHECK : " .. resdec-(ndec1*ndec2))
end
--mul_test()
-- m = 300, base 2^26, 100 repeats: amd ryzen 1200: 0.1s, amd-e350 apu 1.6ghz (2010) : 5.15s
mul_bench = function()
local m = 300;
local base = 2^26
local r = 100
local n1 = bignum.rnd(base, 1, m)
local n2 = bignum.rnd(base, 1, m)
local res = {digits = {}};
local t = os.clock()
for i = 1, r do bignum.mul(n1,n2,res) end
local elapsed = os.clock() - t;
--say("n1 = " .. bignum.tostring(n1) .. ", n2 = " .. bignum.tostring(n2))
say("mul benchmark. ".. m .. " digits, base " .. base .. ", repeats " .. r .. " -> time " .. elapsed)
end
--mul_bench()
local exp_test = function()
local n1 = bignum.importdec(2);
local res1 = bignum.importdec(2);
local res2 = bignum.importdec(1);
local m=128
for i = 1, m do
bignum.mul(n1,res1, res2) -- n1*res1 = res2
bignum.mul(n1,res2, res1) -- n1*res1 = res2
end
say("2^" .. (2*m) .. " = " .. bignum.tostring(res2) .. " CHECK " ..2^(2*m))
end
--exp_test()
-----------------------------------------------
-- DIVIDE
-----------------------------------------------
bignum.div2 = function(n,res) -- res = n/2, return n % 2. note: its safe to do: bignum.div2(res,res);
local base = n.base;
local data = n.digits; local m = #data;
res.digits = {};
local rdata = res.digits;
local carry = 0
local q = data[m]/2;
local fq = math.floor(q);
if q~=fq then carry = base end
if fq>0 then rdata[m] = fq else rdata[m]=nil end -- maybe digits shrink by 1?
for i = m-1,1,-1 do
local q = (data[i]+carry)/2;
local fq = math.floor(q)
if q~= fq then carry = base else carry = 0 end
rdata[i] = fq;
end
if carry ~= 0 then return 1 else return 0 end
end
local div2_test = function()
local ndec1 = math.random(10^8)
local n1 = bignum.importdec(ndec1)
local res = bignum.new(10,1,n1.digits)
bignum.div2(res,res) -- res = res/2
say("div2_test: n1/2 = " .. bignum.tostring(n1) .. "/2 = " .. bignum.tostring(res) .. " = res")
local rescheck = bignum.new(10,1,{})
bignum._add(res,res,res);bignum._sub(n1,res, res);
say("CHECK: n1-2*res = " .. bignum.tostring(res))
end
--div2_test()
--[[
very simple division that works reasonably well (we only need 1 division for barrett reduction anyway, could use precomputed too)
strategy: bisection for f(x) = x*D + comparison with N, takes around Log_2(initial range) steps (sums+mults),
so ~O(D^2*log base^(n2-n1))
low, mid, high. pick reasonably good initial range guess, like near order of magnitude close.
mid = (low+high)/2
compute: compare N and mid*D, if N bigger then low = mid else high = mid..
BENCHMARKS: (amd ryzen 1200)
HUGE N=10k bit number/ D=5k bit number : 1.5 s
N = 8k bit number / D = 4k bit number : 0.7s
N = 1040 bit, D = 520 bit: 0.0042 s ( typical application srp,diffie-hellman in Z_~2^512 group)
if D is 3900 bits it takes around 3900 steps of iteration
amd-e350 apu 1.6ghz (sep 2010)
N = 8k bit, D = 4k bit, divide takes 44s ( 60x slower than ryzen)
AMD Dual Core E2-1800 (july 2012)
N = 8k bit, D = 4k bit, 5.25s
TODO:
possible speed improve ?: after there are some digits correct
reduce N by N = N-q0*D which will effectively decrease N and multiplies of mid ( smaller numbers ). then keep adding
obtained q's together to get final quotient.
--]]
bignum.div = function(N,D, res) -- res = [N/D]
local base = N.base;
res.base = base
res.digits = {};
local data = res.digits;
local n1 = #N.digits;local n2 = #D.digits;
-- trivial cases, prevent wasting time here
if n1<n2 then res.digits = {0}; return end -- clearly N<D
if n2 == 1 and D.digits[1] == 1 then res.digits = N.digits return end -- division by 1!
local low = bignum.new(base,1,{})
local high = bignum.new(base,1,{})
-- better initial range for less needed iterations
local ldigits = low.digits;local hdigits = high.digits;
for i = 1,n1-n2 do ldigits[i]=0;hdigits[i]=0 end
ldigits[n1-n2]=N.digits[n1];hdigits[n1-n2+1] = ldigits[n1-n2];
--say("low " .. bignum.tostring(low) .. " high " .. bignum.tostring(high))
local mid = bignum.new(base,1,{});
local temp = bignum.new(base,1,{});
local step = 0;
while step < 100000 do -- in practice this uses around log_2 (base^(n2-n1)) iterations, for example dividing 8192 bit number by 4096 takes ~4000 iterations..
step = step + 1
bignum._add(low,high,mid); bignum.div2(mid,mid); -- mid = (low+high)/2
if bignum.is_equal(low,mid) then
if DEBUG then say("DONE. step " .. step) end-- .. " low = " .. bignum.tostring(low) .. " high = " .. bignum.tostring(high) .. " mid = " .. bignum.tostring(mid))
res.digits = mid.digits
return
end
bignum.mul(D, mid, temp) -- temp = D*mid
if bignum.is_larger(N,temp) then low.digits = mid.digits else high.digits = mid.digits end
end
end
local div_test = function()
local ndec1 = math.random(10^8)
local n1 = bignum.importdec(ndec1)
local ndec2 = math.random(10^6)
local n2 = bignum.importdec(ndec2)
local res = bignum.new(10,1,{})
bignum.div(n1,n2,res)
local temp = bignum.new(10,1,{})
bignum.mul(n2,res,temp);bignum._sub(n1,temp,temp) -- temp = n1 - n2*res
say(ndec1/ndec2)
say("n1/n2 = " .. bignum.tostring(n1) .. " / " .. bignum.tostring(n2) .. " = res = " .. bignum.tostring(res) .. ", residue n1-n2*res = " .. bignum.tostring(temp) .. (bignum.is_larger(n2,temp) and " (IS SMALLER THAN n2) " or " FAIL."))
end
--div_test()
local divbignum_test = function()
local m = 300;
local base = 2^26
local n1 = bignum.rnd(base, 1, m)
local n2 = bignum.rnd(base, 1, m/2)
local res = {sgn=1, digits = {}};
DEBUG = true -- to display how many steps were needed
local t = os.clock();bignum.div(n1,n2,res); local elapsed = os.clock() - t;
DEBUG = false
local temp = {sgn=1, digits = {}};
bignum.mul(n2,res,temp);bignum._sub(n1,temp, res); -- res = n1-n2*res
if bignum.is_larger(n2, res) then
say("divbignum_test : residue n1 - n2*res is smaller than n2. OK.")
else
say("divbignum_test : residue n1 - n2*res is NOT smaller than n2. FAIL.")
end
end
--divbignum_test()
div_bench = function()
local m = 300;
local base = 2^26
local r = 1
local n1 = bignum.rnd(base, 1, m)
local n2 = bignum.rnd(base, 1, m/2)
local res = {sgn=1, digits = {}};
local t = os.clock()
for i = 1, r do bignum.div(n1,n2,res) end
local elapsed = os.clock() - t;
say("n1 = " .. bignum.tostring(n1) .. "\nn2 = " .. bignum.tostring(n2) .. "\nn1/n2 = " .. bignum.tostring(res))
say("div benchmark. n1 (".. m .. " digits ( " .. 26*m .." bits)), n2 (" .. m/2 .. " digits), base " .. base .. ", repeats " .. r .. " -> time " .. elapsed)
end
--div_bench()
bignum.base2binary = function(_n)
local base = _n.base;
local n = {sgn = 1, base = base, digits = _n.digits }
local data = n.digits;
local i = 0;
local out = {};
while (#data > 1 or (#data==1 and data[1] > 0)) do -- n>0
i=i+1
out[i] = bignum.div2(n,n); data = n.digits;
end
return {sgn=1,base = 2, digits = out}
end
local base2binary_test = function()
local base = 10;
local m = 2;
local n = bignum.rnd(base, 1, m)
local nb = bignum.base2binary(n);
say(bignum.tostring(n) .. " -> " .. bignum.tostring(nb))
end
--base2binary_test()
bignum.binary2base = function(n, newbase) -- newbase must be even
local base = n.base;
local ret = {sgn=1,base=newbase, digits = {0}}
local out = ret.digits
local data = n.digits
for i = #data,1,-1 do
bignum._add(ret,ret,ret) -- ret = 2*ret
out = ret.digits
out[1]=out[1]+ data[i]; -- WARNING: basically +1, if newbase is even no carry, else more complication here
end
return ret
end
local binary2base_test = function()
local base = 10;
local m = 4;
local nb = bignum.rnd(2, 1, m)
local n = bignum.binary2base(nb,base);
say(bignum.tostring(nb) .. " -> " .. bignum.tostring(n))
end
--binary2base_test()
-----------------------------------------------
-- MODULAR MULTIPLY
-----------------------------------------------
-- a,b in Z_n -> a*b mod n = ?
-- how to compute a % n efficiently? We can use barrett reduction trick.
-- normally: a%n = a - [a/n]*n. Instead of division we compute [a/n] with multiply and shift ( base = b)
-- [a/n] = [a*(B^k/n)/B^k] = [a*m/B^k]. Here integer m is [B^k/n] for some k, where B^k>=n. since
-- a*(m/B^k-1/n) < 1 we get a*(m-B^k/n) < B^k or m-B^k/n < B^k/a. since left side is always <1 this will be true if
-- 1 < B^k/a or a < B^k. note since a*m/B^k - a/n < 1 after applying [ ] we can still get difference = 1 (but not more),
-- so need to check if a - [a*m/B^k]*n is smaller than n. If not additional -n is needed.
-- so REQUIREMENTS: n<=B^k, a< B^k.
-- if we need a<n^2 (like in modulo multiply in Z_n) then this means: (n-1)^2 < B^k. So if n<B^N then k should be 2N.
-- barret = {n = bignum, m = from barrett.., k= .., }
-- returns barrett data. used to cheaply compute a/n without division as bitshiftright_k(a*m) + possible 1, where a <= (n-1)^2
bignum.get_barrett = function(n)
local base = n.base;
local k = 2*#n.digits+2; -- n<B^(n1+1) -> k = 2*(n1+1)
local Bk = bignum.new(base,1,{})
local res = bignum.new(base,1,{})
local data = Bk.digits;
for i =1,k do data[i]= 0 end; data[k+1]=1; -- this is B^k
bignum.div(Bk, n,res);
return {n=n, m=res, k=k};
end
local get_barrett_test = function()
local d=4
local ndec2 = math.random(10^d)
local n2 = bignum.importdec(ndec2)
local barrett = bignum.get_barrett(n2)
local barrettm = math.floor(10^(2*d+2)/ndec2)
say(bignum.tostring(barrett.m) .. "(CHECK: " .. barrettm .. ")")
end
--get_barrett_test()
-- mod using barrett. possible improvement: montgomery.
bignum.mod = function(a,barrett,res) -- a should be less or equal (n-1)^2, stores a%n into res
local k = barrett.k;
local n = barrett.n;
local m = barrett.m;
local base = a.base;
bignum.mul(a,m,res); -- large multiply 1: res = a*m
local data = res.digits;local n1 = #data; --res = res / B^k
for i = 1, n1-k do data[i]=data[i+k] end; for i = n1-k+1,n1 do data[i] = nil end -- bitshift
local temp = bignum.new(base,1,{});
bignum.mul(res,n, temp); -- multiply 2: res*n
bignum._sub(a,temp,res); -- subtract: res = a - res*n
if bignum.is_larger(res,n) then bignum._sub(res,n,res) end
end
local mod_test = function()
local m = 3;
local base = 10;
local n1 = bignum.rnd(base, 1, 2*m)
local n2 = bignum.rnd(base, 1, m)
local barrett = bignum.get_barrett(n2)
local res = bignum.new(base,1,{});
bignum.mod(n1, barrett, res);
local is_larger = bignum.is_larger(n2,res);
say("barrett mod_test: n1 " .. bignum.tostring(n1) .. " n2 " .. bignum.tostring(n2) .. " res = n1 % n2 = " .. bignum.tostring(res) .. " CHECK: res<n2 " .. (is_larger and "OK" or "FAIL") )
end
--mod_test()
-- computing a^b mod n using modular exponentiation :
-- 1. suppose we have b = sum_i b_i*2^i ( binary expansion). Then a^b = prod_i a^(2^i) a^b_i.
-- we start from low bits and multiply with new term each step. we compute a^(2^i) mod n iteratively, with a = a^2 mod n.
-- In each step if b_i == 1 we multiply with a. Work: 2-3 multiplies each step
-- 2. we could first compute all b_i and then start from high end ( like efficient polynomial evaluate):
-- res = res^2*a^(b_i) mod n . work (1-2 multiplies per step + all b_i).
-- 3. sliding window. works like 2 but it uses binary representation of b and does larger parts (window size k) at once. Window it
-- uses is of the form 1xxxxxxxx1, where total length less than prescribed k. Potentially k* faster but with precompute of 2^k-1 values
-- method 1
bignum.modpow = function(a_,b_,barrett) -- efficiently calculate a^b mod n, need log_2 b steps
local base = a_.base
local a = bignum.new(base,1,a_.digits); -- base
local b = bignum.new(base,1,b_.digits); -- exponent
local bdata = b.digits;
local ret = bignum.new(base,1,{1});
local temp = bignum.new(base,1,{});
while (#bdata > 1 or (#bdata==1 and bdata[1] > 0)) do -- b>0
if bdata[1] % 2 == 1 then
bignum.mul(ret, a, temp)
bignum.mod(temp,barrett, ret) -- ret = a*ret % n
end
bignum.div2(b,b); bdata = b.digits -- b = b/2
bignum.mul(a,a,temp);bignum.mod(temp,barrett, a) -- a=a^2 % n
end
return ret
end
-- times: base 2^26.
-- ryzen 3 1200: m=150 (4000 bits): 7.2s, m=80(2080bits): 1.1s, m=40: 0.14, m = 30: 0.07, m = 20: 0.028
-- amd-e350 apu 1.6ghz (2010), m = 20: 0.59s, m = 40: 6.28s
DH_bench = function() -- test for modpow with diffie-hellman key exchange
local m = 40;
local bits = 26
local base = 2^bits;
local a = bignum.rnd(base, 1, m)
local b = bignum.rnd(base, 1, m)
local c = bignum.rnd(base, 1, m)
local n = bignum.rnd(base, 1, m)
local t = os.clock()
local barrett = bignum.get_barrett(n) -- precompute this from modulo n
local t1 = os.clock(); say("barret pre computation : " .. t1-t);t=t1
local resb = bignum.modpow(a,b, barrett); -- efficient modular a^b using barrett reductions
t1 = os.clock();say("resb = modpow(a,b) : " .. t1-t);t=t1
local resc = bignum.modpow(a,c, barrett); -- a^c
t1 = os.clock();say("resc = modpow(a,c) : " .. t1-t);t=t1
local resbc = bignum.modpow(resb,c, barrett); -- (a^b)^c
t1 = os.clock();say("resbc = modpow(resb,c) : " .. t1-t);t=t1
local rescb = bignum.modpow(resc,b, barrett); -- (a^c)^b
t1 = os.clock();say("rescb = modpow(resc,b) : " .. t1-t);t=t1
say("DH benchmark: (a^b)^c = " .. bignum.tostring(resbc) .. "\nCHECK equality (a^b)^c == (a^c)^b : " .. (bignum.is_equal(resbc,rescb) and "OK" or "FAIL"))
say("settings: base " .. base .. ", digits " .. m .. " (" .. m*bits .." bits )")
end
DH_bench()
-- note: DH security ( log problem ) can be solved for 512 bit by expert team, 1024 prime modulo for state actors ( logjam attack, "Imperfect Forward Secrecy:
-- How Diffie-Hellman Fails in Practice", Oct 2015
self.remove() -- prevent loop in robot csm
|